Skip to main content
Log in

Global well-posedness and critical norm concentration for inhomogeneous biharmonic NLS

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider the inhomogeneous biharmonic nonlinear Schr dinger (IBNLS) equation in \({\mathbb {R}}^N\),

$$\begin{aligned} i \partial _t u +\Delta ^2 u -|x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$

where \(\sigma > 0\) and \(b > 0\). We first study the local well-posedness in \({\dot{H}}^{s_c}\cap \dot{H}^2 \), for \(N\ge 5\) and \(0<s_c<2\), where \(s_c=\frac{N}{2}-\frac{4-b}{2\sigma }\). Next, we established a Gagliardo-Nirenberg type inequality in order to obtain sufficient conditions for global existence of solutions in \(\dot{H}^{s_c}\cap \dot{H}^2\) with \(0\le s_c<2\). Finally, we study the phenomenon of \(L^{\sigma _c}\)-norm concentration for finite time blow up solutions with bounded \(\dot{H}^{s_c}\)-norm, where \(\sigma _c=\frac{2N\sigma }{4-b}\). Our main tool is the compact embedding of \(\dot{L}^p\cap \dot{H}^2\) into a weighted \(L^{2\sigma +2}\) space, which may be seen of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. See Sect. 2 for the definitions of B-admissible and \({\dot{H}}^{s_c}\)-biharmonic admissible pairs.

  2. Recall that \(\sigma _c=\tfrac{2N\sigma }{4-b}\).

  3. Here we are using that \(N\ge 5\).

  4. It is easy to see that \(2<r<\frac{N}{s_c}\). Furthermore, in view of \(\sigma >\frac{2-b}{4}\) one has \(r<\frac{2N}{N-4}\).

  5. It is easy to check that \(\frac{4}{q}=\frac{N}{2}-\frac{N}{r}\) and if \(\frac{4-b}{N}<\sigma <\frac{4-b}{N-4}\), then \(2<r<\frac{2N}{N-4}\).

  6. The value of \({\widetilde{a}}\) is given by \({\widetilde{a}}=\tfrac{2(2\sigma -\theta +2)}{s_c(2\sigma -\theta )+2+s_c-\varepsilon }\). Moreover, since \(s_c<2\) and \(a>\frac{4}{2-s_c}\) we have \(2<r<\frac{2N}{N-4}\).

  7. Here \({\widetilde{a}}=\tfrac{2}{s_c}\). Observe that since \(0<s_c<2\) we obtain \(2<r<\frac{2N}{N-4}\).

  8. Recalling that \(s_p=\frac{N}{2}-\frac{N}{p}\).

  9. Note that for \(\eta \) small enough and \(0<\sigma <4^*\) we have \(p< r<2^*\).

References

  1. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Springer-Verlag, Berlin-New York, Grundlehren der Mathematischen Wissenschaften, No. 223, (1976)

  2. Boulenger, T., Lenzmann, E.: Blowup for biharmonic NLS. Ann. Sci. Éc. Norm. Supér. 50(4), 503–544 (2017)

    Article  MathSciNet  Google Scholar 

  3. Cardoso, M., Farah, L.G., Guzmán, C.M.: On well-posedness and concentration of blow-up solutions for the intercritical inhomogeneous NLS equation, arXiv:2004.06706

  4. Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\). Nonlinear Anal. 11(10), 807–836 (1990)

    Article  Google Scholar 

  5. Dinh, V.D.: On blowup solutions to the focusing intercritical nonlinear fourth-order Schrödinger equation. J. Dynam. Differ. Equ. 31(4), 1793–1823 (2019)

    Article  Google Scholar 

  6. Dinh, V.D.: A study on blowup solutions to the focusing \({L}^2\)-supercritical nonlinear fractional Schrödinger equation. J. Math. Phys. 59(7), 071506 (2018)

    Article  MathSciNet  Google Scholar 

  7. Farah, L.G.: Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation. J. Evol. Equ. 1(16), 193–208 (2016)

    Article  Google Scholar 

  8. Fibich, G., Ilan, B., Papanicolaou, G.: Self-focusing with fourth-order dispersion. SIAM J. Math. Anal. 62, 1437–1462 (2002)

    Article  MathSciNet  Google Scholar 

  9. Guo, Q.: A note on concentration for blowup solutions to supercritical Schrödinger equations. Proc. Amer. Math. Soc. 141(12), 4215–4227 (2013)

    Article  MathSciNet  Google Scholar 

  10. Guzmán, C., Pastor, A.: On the inhomogeneous biharmonic nonlinear Schrödinger equation: local, global and stability results. Nonlinear Anal. Real World Appl. 56, 103174 (2020)

    Article  MathSciNet  Google Scholar 

  11. Hajlasz, P., Kalamajska, A.: Polynomial asymptotics and approximation of Sobolev functions. Studia Math. 113(1), 55–64 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Comm. Math. Phys. 282(2), 42135–467 (2008)

  13. Karpman, V.I.: Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger-type equations. Phys. Rev. E 53(2), R1336 (1996)

    Article  Google Scholar 

  14. Karpman, V.I., Shagalov, A.G.: Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion. Phys. D 144(1–2), 194–210 (2000)

    Article  MathSciNet  Google Scholar 

  15. Lieb, E. H., Loss, M.: Analysis. American Mathematical Society Providence, Rhode Island, Graduate Studies in Mathematics, Volume 14, (2001)

  16. Linares, F., Ponce, G.: Introduction to nonlinear dispersive equations, 2nd edn. Universitext. Springer, New York (2015)

    Book  Google Scholar 

  17. Lin, C.S.: Interpolation inequalities with weights. Commun. Partial Differ. Equ. 11(14), 1515–1538 (1986)

    Article  MathSciNet  Google Scholar 

  18. Merle, F., Raphäel, P.: Blow up of the critical norm for some radial \({L}^2\) super critical nonlinear Schrödinger equations. Amer. J. Math. 130, 945–978 (2008)

    Article  MathSciNet  Google Scholar 

  19. Pausader, B.: Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case. Dyn. Partial Differ. Equ. 4(3), 197–225 (2007)

    Article  MathSciNet  Google Scholar 

  20. Stein, E., Weiss, G.: Fractional integrals on \(n\)-dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)

    MathSciNet  MATH  Google Scholar 

  21. Stevenson, N., Tice, I.: A truncated real interpolation method and characterizations of screened Sobolev spaces. arXiv:2003.12518v2

  22. Sulem, C., Sulem, P.-L.: The nonlinear Schrödinger equation: Self-focusing and wave collapse. Applied Mathematical Sciences, vol. 139. Springer-Verlag, New York (1999)

  23. Triebel, H.: Theory of function spaces. Birkhäuser, Reprinted 2010 by Springer Basel AG. Reprint of the 1983 Edition

  24. Wang, B., Huo, Z., Hao, C., Guo, Z.: Hamonic Analysis method for nonlinear evolution equations, I. World Scientific, (2011)

  25. Weinstein, M.: Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87(4):567–576, 1982/83

Download references

Acknowledgements

A.P. is partially supported by CNPq/Brazil grant 303762/2019-5 and FAPESP/Brazil grant 2019/02512-5.

Author information

Authors and Affiliations

Authors

Additional information

Communicated by David Lannes.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, M., Guzmàn, C.M. & Pastor, A. Global well-posedness and critical norm concentration for inhomogeneous biharmonic NLS. Monatsh Math 198, 1–29 (2022). https://doi.org/10.1007/s00605-021-01667-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-021-01667-w

Keywords

Mathematics Subject Classification

Navigation