Skip to main content
Log in

Periodic boundary value problem for second-order differential equations from geophysical fluid flows

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study a new model for a jet component of the Antarctic Circumpolar Current. In the case of vorticity with perturbation, we present the existence results for positive solutions to periodic boundary value problems for general nonlinear, weak nonlinearity and semilinear terms. A computational method is established and an approximate scheme of solution is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haziot, S.V., Marynets, K.: Applying the stereographic projection to modeling of the flow of the Antarctic circumpolar current. Oceanography 31, 68–75 (2018)

    Article  Google Scholar 

  2. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46, 3585–3594 (2016)

    Article  Google Scholar 

  3. Marynets, K.: Two-point boundary problem for modeling the jet flow of the Antarctic Circumpolar Current. Electron. J. Differ. Equ. 2018, 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  4. Constantin, A., Johnson, R.S.: Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170063 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Chu, J.: On a differential equation arising in geophysics. Monatshefte für Mathematik 187, 499–508 (2018)

    Article  MathSciNet  Google Scholar 

  6. Chu, J.: Monotone solutions of a nonlinear differential equation for geophysical fluid flows. Nonlinear Anal. 166, 144–153 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chu, J.: On a nonlinear model for arctic gyres. Ann. Matematica 197, 651–659 (2018)

    Article  MathSciNet  Google Scholar 

  8. Marynets, K.: A nonlinear two-point boundary-value problem in geophysics. Monatshefte für Mathematik 188, 287–295 (2019)

    Article  MathSciNet  Google Scholar 

  9. Marynets, K.: A weighted Sturm-Liouville problem related to ocean flows. J. Math. Fluid Mech. 20, 929–935 (2018)

    Article  MathSciNet  Google Scholar 

  10. Marynets, K.: On a two-point boundary-value problem in geophysics. Appl. Anal. 98, 553–560 (2019)

    Article  MathSciNet  Google Scholar 

  11. Constantin, A.: Some three-dimensional nonlinear equatorial ows. J. Phys. Oceanogr. 43, 165–175 (2013)

    Article  Google Scholar 

  12. Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)

    Article  Google Scholar 

  13. Constantin, A., Johnson, R.S.: A nonlinear, three-dimensional model for ocean ows, motivated by some observations of the Pacifc Equatorial Undercurrent and thermocline. Phys. Fluids 29, 056604 (2017)

    Article  Google Scholar 

  14. Constantin, A., Johnson, R.S.: Large-scale oceanic currents as shallow water asymptotic solutions of the Navier–Stokes equation in rotating spherical coordinates. Deep Sea Res. Part II Top. Stud. Oceanogr. 160, 32–40 (2019)

    Article  Google Scholar 

  15. Constantin, A., Johnson, R.S.: Ekman-type solutions for shallow-water flows on a rotating sphere: a new perspective on a classical problem. Phys. Fluids 31, 021401 (2019)

    Article  Google Scholar 

  16. Chu, J., Escher, J.: Steady periodic equatorial water waves with vorticity. Discrete Contin. Dyn. Syst. Ser. A 39, 4713–4729 (2019)

    Article  MathSciNet  Google Scholar 

  17. Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)

    Article  MathSciNet  Google Scholar 

  18. Henry, D., Martin, C.I.: Exact, free-surface equatorial flows with general stratification in spherical coordinates. Arch. Ration. Mech. Anal. 233, 497–512 (2019)

    Article  MathSciNet  Google Scholar 

  19. Hsu, H.C., Martin, C.I.: On the existence of solutions and the pressure function related to the Antarctic Circumpolar Current. Nonlinear Anal. Theory Methods Appl. 155, 285–293 (2017)

    Article  MathSciNet  Google Scholar 

  20. Martin, C.I., Quirchmayr, R.: Explicit and exact solutions concerning the Antarctic Circumpolar Current with variable density in spherical coordinates. J. Math. Phys. 60, 101505 (2019)

    Article  MathSciNet  Google Scholar 

  21. Matioc, A.V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A Math. Theor. 45, 365501 (2012)

    Article  MathSciNet  Google Scholar 

  22. Matioc, A.V.: An explicit solution for deep water waves with coriolis effects. J. Nonlinear Math. Phys. 19, 1240005 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(f\)-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)

    Article  MathSciNet  Google Scholar 

  24. Matioc, A.V., Matioc, B.V.: On periodic water waves with coriolis effects and isobaric streamlines. J. Nonlinear Math. Phys. 19, 1240009 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, W., Wang, J., Fečkan, M.: Existence and uniqueness results for a second order differential equation for the ocean flow in Arctic gyres. Monatshefte für Mathematik 193, 177–192 (2020)

    Article  MathSciNet  Google Scholar 

  26. Zhang, W., Fečkan, M., Wang, J.: Positive solutions to integral boundary value problems from geophysical fluid flows. Monatshefte für Mathematik 193, 901–925 (2020)

    Article  MathSciNet  Google Scholar 

  27. Gaines, R.E., Mawhin, J.: Coindicence Degree, and Nonlinear Differential Eqiations. Springer, Berlin (1977)

    Book  Google Scholar 

  28. Torres, P.J.: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. Differ. Equ. 190, 643–662 (2003)

    Article  MathSciNet  Google Scholar 

  29. Lin, X., Li, X., Jiang, D.: Positive solutions to superlinear semipositone periodic boundary value problems with repulsive weak singular forces. Comput. Math. Appl. 51, 507–514 (2006)

    Article  MathSciNet  Google Scholar 

  30. Graef, J.R., Kong, L., Wang, H.: A periodic boundary value problem with vanishing Green’s function. Appl. Math. Lett. 21, 176–180 (2008)

    Article  MathSciNet  Google Scholar 

  31. Jiang, D., Chu, J., Zhang, M.: Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differ. Equ. 211, 282–302 (2005)

    Article  MathSciNet  Google Scholar 

  32. Krasnosel’skii, M.A.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading of the manuscript and their valuable comments. We thank the editor also. There are no conflicts of interest to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Guizhou Data Driven Modeling Learning and Optimization Innovation Team ([2020]5016), Department of Science and Technology of Guizhou Province ((Fundamental Research Program [2018]1118)), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 1/0358/20 and No. 2/0127/20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, W. & Fečkan, M. Periodic boundary value problem for second-order differential equations from geophysical fluid flows. Monatsh Math 195, 523–540 (2021). https://doi.org/10.1007/s00605-021-01539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-021-01539-3

Keywords

Mathematics Subject Classification

Navigation