Skip to main content
Log in

A nonlinear two-point boundary-value problem in geophysics

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We study a recently derived model for gyres, equivalent to a a two-point boundary-value problem for ocean flows with no azimuthal variations. For a large class of oceanic vorticities we establish the existence of solutions using an approach based on the topological transversality theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey, P., Waltman, P.: Existence and uniqueness of solutions of the first boundary value problem for non-linear second order differential equations. Arch. Ration. Mech. Anal. 21, 310–320 (1966)

    Article  MATH  Google Scholar 

  2. Bernstein, S.R.: Sur les équations du calcul des variations. Ann. Sci. École Norm. Sup. 29, 431–485 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chu, J.: On a differential equation arising in geophysics. Monatsh. Math. (2017). https://doi.org/10.1007/s00605-017-1087-1

    Google Scholar 

  4. Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Ocean. 1179, C05029 (2012). https://doi.org/10.1029/2012JC007879

    Google Scholar 

  5. Constantin, A.: On a two-point boundary value problem. J. Math. Anal. Appl. 193, 318–328 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, A.: Nonlinear water waves with applications to wave-current interactions and tsunamis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, pp. 81. SIAM, Philadelphia (2011)

  7. Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 78–789 (2014)

    Article  Google Scholar 

  8. Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)

    Article  Google Scholar 

  9. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the equatorial undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

    Article  MathSciNet  Google Scholar 

  10. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935–1945 (2016)

    Article  Google Scholar 

  11. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic circumpolar current. J. Phys. Oceanogr. 46, 3585–3594 (2016)

    Article  Google Scholar 

  12. Constantin, A., Johnson, R.S.: Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Proc. R. Soc. Lond. A 473, 20170063 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, A., Monismith, S.G.: Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511–528 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin, A., Strauss, W., Varvaruca, E.: Global bifurcation of steady gravity water waves with critical layers. Acta Math. 217, 195–262 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ewing, J.A.: Wind, wave and current data for the design of ships and offshore structures. Mar. Struct. 3, 421–459 (1990)

    Article  Google Scholar 

  16. da Silva, A.F.T., Peregrine, D.H.: Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195, 281–302 (1988)

    Article  MathSciNet  Google Scholar 

  17. Gabler, R.E., Petersen, J.F., Trapasso, L.M.: Essentials of Physical Geography. Thomson Brooks/Cole, Belmont (2007)

    Google Scholar 

  18. Garrison, T.: Essentials of Oceanography. National Geographic Society/Cengage Learning, Stamford (2014)

    Google Scholar 

  19. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Book  MATH  Google Scholar 

  20. Granas, A., Guenther, R.B., Lee, J.W.: On a theorem of S. Bernstein. Pac. J. Math. 74, 67–82 (1978)

    Article  MATH  Google Scholar 

  21. Henry, D.: A modified equatorial \(\beta \)-plane approximation modelling nonlinear wave-current interactions. J. Differ. Equ. 263, 2554–2566 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Henry, D.: Equatorially trapped nonlinear water waves in a-plane approximation with centripetal forces. J. Fluid Mech. 804, R1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hsu, H.-C., Martin, C.I.: On the existence of solutions and the pressure function related to the Antarctic circumpolar current. Nonlinear Anal. 155, 285–293 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jonsson, I.G.: Wave-current interactions. In: Le Méhauté, B., Hanes, D. M. (eds.) The Sea. Ocean Eng. Sci., vol. 9(A), pp. 65–120. Wiley (1990)

  26. Keller, H.B.: Existence theory for two point boundary value problems. Bull. Am. Math. Soc. 72, 728–731 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kluczek, M.: Exact and explicit internal equatorial water waves with underlying currents. J. Math. Fluid Mech. 19, 305–314 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Martin, C.I.: On the existence of free-surface azimuthal equatorial flows. Appl. Anal. 96, 1207–1214 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marynets, K.: On a two-point boundary-value problem in geophysics. Appl. Anal. (accepted for publication)

  30. Moreira, R.M., Chacaltana, J.T.A.: Vorticity effects on nonlinear wave-current interactions in deep water. J. Fluid Mech. 778, 314–334 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sanjurjo, A.R.: Global diffeomorphism of the Lagrangian flow-map for equatorially trapped internal water waves. Nonlinear Anal. TMA 149, 156–164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Thomas, G.P.: Wave-current interactions: an experimental and numerical study. J. Fluid Mech. 216, 505–536 (1990)

    Article  MATH  Google Scholar 

  33. Vallis, G.K.: Geophysical fluid dynamics: whence, whither and why? Proc. R. Soc. Lond. A 472, 20160140 (2016)

    Article  Google Scholar 

  34. Viudez, A., Dritschel, D.G.: Vertical velocity in mesoscale geophysical flows. J. Fluid Mech. 483, 199–223 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Walton, D.W.H.: Antarctica: Global Science from a Frozen Continent. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateryna Marynets.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marynets, K. A nonlinear two-point boundary-value problem in geophysics. Monatsh Math 188, 287–295 (2019). https://doi.org/10.1007/s00605-017-1127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-017-1127-x

Keywords

Mathematics Subject Classification

Navigation