Skip to main content
Log in

On the Schwartz space \( {\mathcal {S}}(G(k)\backslash G({\mathbb {A}})) \)

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

For a connected reductive group G defined over a number field k, we construct the Schwartz space \( {\mathcal {S}}(G(k)\backslash G({\mathbb {A}})) \). This space is an adelic version of Casselman’s Schwartz space \( {\mathcal {S}}({\Gamma }\backslash G_\infty ) \), where \( {\Gamma } \) is a discrete subgroup of \( G_\infty :=\prod _{v\in V_\infty }G(k_v) \). We study the space of tempered distributions \( {\mathcal {S}}(G(k)\backslash G({\mathbb {A}}))' \) and investigate applications to automorphic forms on \( G({\mathbb {A}}) \). In particular, we study the representation \( \left( r',{\mathcal {S}}(G(k)\backslash G({\mathbb {A}}))'\right) \) contragredient to the right regular representation \( (r,{\mathcal {S}}(G(k)\backslash G({\mathbb {A}}))) \) of \( G({\mathbb {A}}) \) and describe the closed irreducible admissible subrepresentations of \( {\mathcal {S}}(G(k)\backslash G({\mathbb {A}}))' \) assuming that G is semisimple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Advances in the theory of automorphic forms and their L-functions. In: Jiang, D., Shahidi, F., Soudry, D. (eds.) Proceedings of the Workshop in Honor of James Cogdell’s 60th Birthday, Vienna, 2013. Contemp. Math, vol. 664. AMS, Providence, RI (2016)

  2. Automorphic forms, representations, and L-functions. In: Borel, A., Casselman, W. (eds.) Proceedings of Symposia in Pure Mathematics, vol. 33 (Corvallis 1977). AMS, Providence, RI (1979)

  3. Automorphic representations and L-functions. In: Prasad, D., et al. (eds.) A Publication of the Tata Institute of Fundamental Research. American Mathematical Society (2013)

  4. Bernstein, J.N.: On the support of Plancherel measure. J. Geom. Phys. 5(4), 663–710 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borel, A.: Some finiteness properties of adele groups over number fields. Publ. Math. l’IHÉS 16, 5–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borel, A., Jacquet, H.: Automorphic forms and automorphic representations. In: [2], Part 1, pp. 189–202

  7. Casselman, W.: Introduction to the Schwartz space of \( {\Gamma }\backslash G \). Can. J. Math. 41(2), 285–320 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casselman, W.: Theorem of Dixmier & Malliavin. In: Essays on Representations of Real Groups (2016), http://www.math.ubc.ca/~cass/research/pdf/Dixmier-Malliavin.pdf

  9. Cohomology of Arithmetic Groups. In: Cogdell, J., Harder, G., Kudla, S., Shahidi, F. (eds.) On the Occasion of Joachim Schwermer’s 66th Birthday, Bonn, Germany, June 2016. Springer Proceedings in Mathematics & Statistics, vol. 245, Springer, Cham (2018)

  10. Dixmier, J., Malliavin, P.: Factorisations de fonctions et de vecteurs indéfiniment différentiables. Bull. Sci. Math. 102, 307–330 (1978)

    MathSciNet  MATH  Google Scholar 

  11. De Grande-De Kimpe, N., Kakol, J., Perez-Garcia, C., Schikhof, W. H.: p-adic locally convex inductive limits. In: [31], pp. 159–222

  12. Flath, D.: Decomposition of representations into tensor products. In: [2], Part 1, pp. 179–183

  13. Garrett, P.: Modern analysis of automorphic forms by example, Vol. 2. Cambridge Studies in Advanced Mathematics 173, Cambridge University Press, Cambridge (2018)

  14. Grbac, N.: Eisenstein cohomology and automorphic L-functions. In [9], pp. 35–50

  15. Grobner, H.: Rationality for isobaric automorphic representations: the CM-case. Monatsh. Math. 187(1), 79–94 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grobner, H.: Lecture notes on automorphic forms. In: preparation

  17. Grobner, H., Harris, M., Lapid, E.: Whittaker rational structures and special values of the Asai L-function. In: [1], pp. 119–134

  18. Harish-Chandra: Discrete series for semisimple Lie groups. II. Explicit determination of the characters. Acta Math. 116, pp. 1–111 (1966)

  19. Köthe, G.: Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften, vol. 159. Springer, Berlin (1983)

  20. Lapid, E.: On the Harish–Chandra Schwartz space of \(G(F)\backslash G(\mathbb{A})\). In: [3], pp. 335–377

  21. Li, J.-S., Schwermer, J.: On the cuspidal cohomology of arithmetic groups. Am. J. Math. 131(5), 1431–1464 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moy, A., Muić, G.: On existence of generic cusp forms on semisimple algebraic groups. Trans. Am. Math. Soc. 370(7), 4731–4757 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Muić, G.: On a construction of certain classes of cuspidal automorphic forms via Poincaré series. Math. Ann. 343(1), 207–227 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Muić, G.: On the cuspidal modular forms for the Fuchsian groups of the first kind. J. Number Theory 130(7), 1488–1511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Muić, G.: Spectral decomposition of compactly supported Poincaré series and existence of cusp forms. Compos. Math. 146(1), 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Muić, G.: On the non-vanishing of certain modular forms. Int. J. Number Theory 7(2), 351–370 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Muić, G.: On the analytic continuation and non-vanishing of L-functions. Int. J. Number Theory 8(8), 1831–1854 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Muić, G.: Some results on the Schwartz space of \( {\Gamma }\backslash G \). Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 21(532), pp. 29–52 (2017)

  29. Muić, G.: Smooth cuspidal automorphic forms and integrable discrete series. Math. Z. 292(3–4), 895–922 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Narici, L., Beckenstein, E.: Topological Vector Spaces, Pure and Applied Mathematics, 2nd edn. Chapman and Hall/CRC Press, Boca Raton, FL (2011)

    MATH  Google Scholar 

  31. p-adic Functional Analysis (eds. Schikhof, W. H., Perez-Garcia, C., Kakol, J.). Proceedings of the Fourth International Conference on p-adic Functional Analysis (Nijmegen 1996). Lecture Notes in Pure and Applied Mathematics 192, Marcel Dekker, Inc., New York (1997)

  32. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc, New York (1991)

    MATH  Google Scholar 

  33. Schaefer, H .H., Wolff, M .P.: Topological Vector Spaces. Graduate Texts in Mathematics 3, 2nd edn. Springer, New York (1999)

    Book  Google Scholar 

  34. Schwermer, J.: Geometric cycles, arithmetic groups and their cohomology. Bull. Am. Math. Soc. (N.S.) 47(2), 187–279 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tits, J.: Reductive groups over local fields. In: [2], Part 1., pp. 29–69

  36. Treves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  37. Wallach, N .R.: Real Reductive Groups I. Pure and Applied Mathematics, vol. 132. Academic Press, Inc., Boston, MA (1988)

    Google Scholar 

  38. Warner, G.: Harmonic Analysis on Semi-Simple Lie Groups I. Die Grundlehren der mathematischen Wissenschaften, vol. 188, Springer, Berlin (1972)

  39. Žunar, S.: On Poincaré series of half-integral weight. Glas. Mat. 53(2), 239–264 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Žunar, S.: On the non-vanishing of Poincaré series on the metaplectic group. Manuscripta Math. 158(1–2), 1–19 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Žunar, S.: On the non-vanishing of L-functions associated to cusp forms of half-integral weight. Ramanujan J. 51, 455–477 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank H. Grobner for enlightening discussions on analytic theory of automorphic forms [16]. In particular, the second author would like to thank H. Grobner and the University of Vienna for their hospitality during her visit in May 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Žunar.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors acknowledge Croatian Science Foundation Grant IP-2018-01-3628.

Appendix

Appendix

Here we collect a few facts from functional analysis used in the paper. All vector spaces are assumed to be complex. All locally convex topological vector spaces are assumed to be Hausdorff.

We start by recalling the definition and basic properties of the Gelfand–Pettis integral (e.g., see [13, §14]).

Theorem 4

Let X be a compact Hausdorff space with a Radon measure dx, and let E and F be quasi-complete (e.g., complete) locally convex topological vector spaces. Then, for every continuous function \( f:X\rightarrow E \) there exists a unique \( \int _Xf(x)\,dx\in E \) (the Gelfand–Pettis integral of f) such that for every continuous linear functional \( T:E\rightarrow {\mathbb {C}}\), we have

$$\begin{aligned} \left<T,\int _Xf(x)\,dx\right>=\int _X\left<T,f(x)\right>\,dx. \end{aligned}$$
(70)

Moreover, the following holds:

  1. (1)

    For every continuous linear operator \( A:E\rightarrow F \),

    $$\begin{aligned} A\left( \int _Xf(x)\,dx\right) =\int _XA(f(x))\,dx. \end{aligned}$$
    (71)
  2. (2)

    For every continuous seminorm \( \nu :E\rightarrow {\mathbb {R}}_{\ge 0} \),

    $$\begin{aligned} \left\Vert \int _Xf(x)\,dx\right\Vert _\nu \le \int _X\left\Vert f(x)\right\Vert _\nu \,dx. \end{aligned}$$

Next, we recall the definition and basic properties of LF-spaces—strict inductive limits of increasing sequences of Fréchet spaces (see e.g. [36, §13], [33, §II.6.3] or [30, §12.1]).

Definition 3

Let \( (E_m)_{m\in {\mathbb {Z}}_{>0}} \) be a sequence of Fréchet spaces such that \( E_m \) is a closed subspace of \( E_{m+1} \) for every \( m\in {\mathbb {Z}}_{>0} \). The vector space \( E:=\bigcup _{m\in {\mathbb {Z}}_{>0}}E_m \) equipped with the finest locally convex topology with respect to which the inclusion maps \( E_m\hookrightarrow E \) are continuous is called the LF-space with a defining sequence \( (E_m)_{m\in {\mathbb {Z}}_{>0}} \).

The next lemma uses the notion of bounded sets in a locally convex topological vector space. We recall their definition [30, Definition 6.1.1 and Theorem 6.1.5].

Definition 4

Let E be a locally convex topological vector space, and let \( {\mathcal {C}}\) be a family of continuous seminorms generating its topology. A subset \( B\subseteq E \) is bounded in E if the following equivalent conditions hold:

  1. (1)

    For every neighborhood U of 0 in E, there exists \( t_0\in {\mathbb {R}}_{>0} \) such that \( B\subseteq tU \) for all \( t\in {\mathbb {C}}\) such that \( \left|t\right|\ge t_0 \).

  2. (2)

    \( \sup _{v\in B}\left\Vert v\right\Vert _\rho <\infty \) for all \( \rho \in {\mathcal {C}}\).

We also need the following definition.

Definition 5

Let E be a vector space. The absolutely convex hull of a subset \( A\subseteq E \) is the set

$$\begin{aligned} {\text {AConv}}(A):=\left\{ \sum _{i=1}^na_iv_i:n\in {\mathbb {Z}}_{>0},\ v_i\in A,\ a_i\in {\mathbb {C}},\ \sum _{i=1}^n\left|a_i\right|\le 1\right\} . \end{aligned}$$

Lemma 24

Let E be an LF-space with a defining sequence \( (E_m)_{m\in {\mathbb {Z}}_{>0}} \). Then, we have the following:

  1. (1)

    The space E is a complete locally convex topological vector space.

  2. (2)

    For every \( m\in {\mathbb {Z}}_{>0} \), let \( {\mathcal {U}}_m \) be a neighborhood basis of 0 in \( E_m \). Let \( {\mathcal {U}}\) be the family of subsets \( U\subseteq E \) of the form

    $$\begin{aligned} U={\text {AConv}}\left( \bigcup _{m\in {\mathbb {Z}}_{>0}}U_m\right) , \end{aligned}$$

    where \( U_m\in {\mathcal {U}}_m \). Then, \( {\mathcal {U}}\) is a neighborhood basis of 0 in E.

  3. (3)

    For every \( m\in {\mathbb {Z}}_{>0} \), \( E_m \) is a closed subspace of E.

  4. (4)

    A subset B of E is bounded in E if and only if there exists \( m\in {\mathbb {Z}}_{>0} \) such that \( B\subseteq E_m \) and B is bounded in \( E_m \).

  5. (5)

    Let \( (v_k)_{k\in {\mathbb {Z}}_{>0}}\subseteq E \) and \( v\in E \). Then, \( v_k\rightarrow v \) in E if and only if there exists \( m\in {\mathbb {Z}}_{>0} \) such that \( (v_k)_{k\in {\mathbb {Z}}_{>0}}\subseteq E_m \), \( v\in E_m \), and \( v_k\rightarrow v \) in \( E_m \).

  6. (6)

    Let F be a locally convex topological vector space. Then, a linear operator \( A:E\rightarrow F \) is continuous if and only if the restrictions \( A\big |_{E_m}:E_m\rightarrow F \), \( m\in {\mathbb {Z}}_{>0} \), are continuous.

  7. (7)

    A seminorm \( p:E\rightarrow {\mathbb {R}}_{\ge 0} \) is continuous if and only if the restrictions \( p\big |_{E_m}:E_m\rightarrow {\mathbb {R}}_{\ge 0} \), \( m\in {\mathbb {Z}}_{>0} \), are continuous.

Proof

The claim (1) holds because E is locally convex by definition (it is Hausdorff by [30, Theorem 12.1.3(b)]) and complete by [30, Theorem 12.1.10]; (2) follows from [30, Theorems 12.1.1 and 4.2.11]; (3) holds by [30, Theorem 12.1.3(a)], (4) by [30, Theorem 12.1.7(a)]; (5) by [30, Theorem 12.1.7(b)], (6) by [30, Theorem 12.2.2], and (7) follows easily from the definition of topology on E. \(\square \)

Next, we recall the notion of the strong dual of a locally convex topological vector space [33, §IV.5] (see also [32, Theorem 3.18]).

Definition 6

Let E be a locally convex topological vector space. The strong dual \( E' \) of E is the space of continuous linear functionals \( E\rightarrow {\mathbb {C}}\) equipped with the locally convex topology generated by the seminorms \( \left\Vert {\,\cdot \,}\right\Vert _B:E'\rightarrow {\mathbb {R}}_{\ge 0} \),

$$\begin{aligned} \left\Vert T\right\Vert _B:=\sup _{f\in B}\left|\left<T,f\right>\right| \end{aligned}$$
(72)

where B goes over all bounded sets in E.

Lemma 25

[36, Corollary 2 of Theorem 32.2] Let E be a metrizable locally convex topological vector space (e.g., a Fréchet space) or an LF-space. Then, the strong dual \( E' \) is complete.

Lemma 26

([19, §29.1(7)]) Let E be a metrizable locally convex topological vector space. Then, the strong dual \( E' \) is metrizable if and only if E is normable.

Lemma 27

Let \( E_1,\ldots ,E_n \) be locally convex topological vector spaces and for each \( i\in \left\{ 1,\ldots ,n\right\} \), let \( \iota _i \) be the canonical inclusion \( E_i\rightarrow \bigoplus _{i=1}^n E_i \). Let us equip the direct sums \( \bigoplus _{i=1}^nE_i \) and \( \bigoplus _{i=1}^nE_i' \) with product topologies. Then, we have the following:

  1. (1)

    A subset B of \( \bigoplus _{i=1}^nE_i \) is bounded if and only if \( B\subseteq \bigoplus _{i=1}^n B_i \) for some bounded subsets \( B_i \) of \( E_i \).

  2. (2)

    The linear operator

    $$\begin{aligned} {\Psi }:\left( \bigoplus _{i=1}^nE_i\right) '\rightarrow \bigoplus _{i=1}^nE_i',\qquad T\mapsto \left( T\circ \iota _i\right) _{i=1}^n, \end{aligned}$$

    is an isomorphism of topological vector spaces.

Proof

(1) This is a special case of [33, I.5.5].

(2) It is elementary and well-known that \( {\Psi } \) is a linear isomorphism. It follows easily from (1) that it is also a homeomorphism. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muić, G., Žunar, S. On the Schwartz space \( {\mathcal {S}}(G(k)\backslash G({\mathbb {A}})) \). Monatsh Math 192, 677–720 (2020). https://doi.org/10.1007/s00605-020-01407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01407-6

Keywords

Mathematics Subject Classification

Navigation