Skip to main content
Log in

Inverse spectral problems for non-self-adjoint Sturm–Liouville operators with discontinuous boundary conditions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

This paper deals with the inverse spectral problem for a non-self-adjoint Sturm–Liouville operator with discontinuous conditions inside the interval. We obtain that if the potential q is known a priori on a subinterval \( \left[ b,\pi \right] \) with \(b\in \left( d,\pi \right] \) or \(b=d\), then \(h,\,\beta ,\,\gamma \) and q on \(\left[ 0,\pi \right] \) can be uniquely determined by partial spectral data consisting of a sequence of eigenvalues and a subsequence of the corresponding generalized normalizing constants or a subsequence of the pairs of eigenvalues and the corresponding generalized ratios. For the case \(b\in \left( 0,d\right) \), a similar statement holds if \(\beta ,\,\gamma \) are also known a priori. Moreover, if q satisfies a local smoothness condition, we provide an alternative approach instead of using the high-energy asymptotic expansion of the Weyl m-function to solve the problem of missing eigenvalues and norming constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meschanov, V.P., Feldstein, A.L.: Automatic Design of Directional Couplers. Sviaz, Moscow (1980)

    Google Scholar 

  2. Litvinenko, O.N., Soshnikov, V.I.: The Theory of Heterogeneous Lines and Their Applications in Radio Engineering. Radio, Moscow (1964). (in Russian)

    Google Scholar 

  3. Amirov, R.K.: On Sturm–Liouville operators with discontinuity conditions inside an interval. J. Math. Anal. Appl. 317, 163–176 (2006)

    Article  MathSciNet  Google Scholar 

  4. Hald, O.H.: Discontinuous inverse eigenvalue problems. Commun. Pure Appl. Math. 37, 539–577 (1984)

    Article  MathSciNet  Google Scholar 

  5. Manafov, M.D.: Inverse spectral problems for energy-dependent Sturm–Liouville equations with finitely many point \( \delta \)-interactions. Electron. J. Differ. Equ. 2016, 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  6. Shieh, C.T., Yurko, V.A.: Inverse nodal and inverse spectral problems for discontinuous boundary value problems. J. Math. Anal. Appl. 347, 266–272 (2008)

    Article  MathSciNet  Google Scholar 

  7. Wang, Y.P., Yurko, V.A.: On the inverse nodal problems for discontinuous Sturm–Liouville operators. J. Differ. Equ. 260, 4086–8109 (2016)

    Article  MathSciNet  Google Scholar 

  8. Xu, X.C., Yang, C.F.: Inverse spectral problems for the Sturm–Liouville operator with discontinuity. J. Differ. Equ. 262, 3093–3106 (2017)

    Article  MathSciNet  Google Scholar 

  9. Yurko, V.A.: Method of Spectral Mappings in the Inverse Problem Theory (Inverse and Ill-Posed Problems Series). VSP, Utrecht (2002)

    Book  Google Scholar 

  10. Wang, Y.P.: Inverse problems for discontinuous Sturm–Liouville operators with mixed spectral data. Inverse Probl. Sci. Eng. 23, 1180–1198 (2015)

    Article  MathSciNet  Google Scholar 

  11. Wang, Y.P., Shieh, C.-T.: The inverse interior transmission eigenvalue problem with mixed spectral data. Appl. Math. Comput. 343, 285–298 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Wang, Y.P.: The inverse spectral problem for differential pencils by mixed spectral data. Appl. Math. Comput. 338, 544–551 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Yang, C.F.: Inverse problems for the Sturm–Liouville operator with discontinuity. Inverse Probl. Sci. Eng. 22, 232–244 (2014)

    Article  MathSciNet  Google Scholar 

  14. Yurko, V.A.: Integral transforms connected with discontinuous boundary value problems. Integral Transform. Spec. Funct. 10, 141–164 (2000)

    Article  MathSciNet  Google Scholar 

  15. Shahriari, M., Akbarfam, A.J., Teschl, G.: Uniqueness for inverse Sturm–Liouville problems with a finite number of transmission conditions. J. Math. Anal. Appl. 395, 19–29 (2012)

    Article  MathSciNet  Google Scholar 

  16. Hochstadt, H., Lieberman, B.: An inverse Sturm–Liouville problem with mixed given data. SIAM J. Appl. Math. 34, 676–680 (1978)

    Article  MathSciNet  Google Scholar 

  17. Davies, E.B.: Non-self-adjoint differential operators. Bull. Lond. Math. Soc. 34, 513–532 (2002)

    Article  MathSciNet  Google Scholar 

  18. Liu, Y., Shi, G., Yan, J.: An inverse problem for non-selfadjoint Sturm–Liouville operator with discontinuity conditions inside a finite interval. Inverse Probl. Sci. Eng. 27, 407–421 (2019)

    Article  MathSciNet  Google Scholar 

  19. Gesztesy, F., Simon, B.: Inverse spectral analysis with partial information on the potential II. The case of discrete spectrum. Trans. Am. Math. Soc. 352, 2765–2787 (2000)

    Article  MathSciNet  Google Scholar 

  20. Wei, G., Xu, H.K.: Inverse spectral problem with partial information given on the potential and norming constants. Trans. Am. Math. Soc. 364, 3265–3288 (2012)

    Article  MathSciNet  Google Scholar 

  21. Wei, Z., Wei, G.: Uniqueness results for inverse Sturm–Liouville problems with partial information given on the potential and spectral data. Bound. Value Probl. 2016, 200 (2016)

    Article  MathSciNet  Google Scholar 

  22. Danielyan, A., Levitan, B.M.: On the asymptotic behavior of the Weyl–Titchmarsh m-function. Math. USSR Izv. 36, 487–496 (1991)

    Article  MathSciNet  Google Scholar 

  23. Markushevich, A.I.: Theory of Functions of a Complex Variable, vol. II. Prentice-Hall Inc, Englewood Cliffs, N.J. (1965)

    MATH  Google Scholar 

  24. Levin, B.Y.: Distribution of Zeros of Entire Functions. Amer. Math. Soc, Providence (1980)

    Google Scholar 

  25. del Rio, R., Gesztesy, F., Simon, B.: Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions. Int. Math. Res. Not. IMRN 15, 751–758 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Pöschel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, New York (1987)

    MATH  Google Scholar 

  27. Savchuk, A.M., Shkalikov, A.A.: On the eigenvalues of the Sturm–Liouville operator with potentials from Sobolev spaces. Math. Notes 80, 814–832 (2006)

    Article  MathSciNet  Google Scholar 

  28. Freiling, G., Yurko, V.A.: Inverse Sturm–Liouville Problems and Their Applications. Nova Science Publishers, Inc., Huntington (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yan.

Additional information

Communicated by Gerald Teschl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was done at University of Vienna while the first author was visiting the Fakultät für Mathematik, supported by the China Scholarship Council. This research was also supported by the National Natural Science Foundation of China under Grant No. 11601372. The authors are indebted to Gerald Teschl for helpful hints with respect to the literature.

Appendix

Appendix

For the self-adjoint classical Sturm–Liouville operators, an interesting uniqueness result is to assume that the potential q satisfies a local smoothness condition so that some eigenvalues and norming constants can be missing. While in [19,20,21] the key technique relies on the high-energy asymptotic expansion of the Weyl m-function [22], in our non-self-adjoint setting, the key to prove the uniqueness problems (Theorems 1, 5, Remark 11, Corollaries 14) will be Proposition 1, to be established below.

Definition 1

For \(i=1,2,\) let \(y_{i,r}(x,\lambda )\) and \({\widetilde{y}} _{i,r}(x,\lambda )\) be solutions of (1.1) corresponding to the potential q and \({\widetilde{q}},\) respectively, where \( y_{i,r}(x,\lambda )\) and \({\widetilde{y}}_{i,r}(x,\lambda )\) satisfy the initial conditions

$$\begin{aligned} y_{1,r}(r,\lambda )= & {} y_{2,r}^{\prime }(r,\lambda )=1, y_{2,r}(r,\lambda )=y_{1,r}^{\prime }(r,\lambda )=0,\ \\ {\widetilde{y}}_{1,r}(r,\lambda )= & {} {\widetilde{y}}_{2,r}^{\prime }(r,\lambda )=1,{\widetilde{y}}_{2,r}(r,\lambda )={\widetilde{y}}_{1,r}^{\prime }(r,\lambda )=0,\ r\in \left[ 0,\pi \right) . \end{aligned}$$

For simplicity, denote \(y_{1}(x,\lambda ):=y_{1,0}(x,\lambda ),\, y_{2}(x,\lambda ):=y_{2,0}(x,\lambda ),\,{\widetilde{y}}_{1}(x,\lambda ):= {\widetilde{y}}_{1,0}(x,\lambda ),\,{\widetilde{y}}_{2}(x,\lambda ):=\widetilde{ y}_{2,0}(x,\lambda ).\)

Proposition 1

Let \(x_{0}\in \left( r,\pi \right] \) for \(r\in \left[ 0,\pi \right) \) and assume that \(q,\,{\widetilde{q}}\in \)\(C^{m}\left[ x_{0}-\delta ,x_{0}\right] \) for some sufficiently small \(\delta >0\) (such that \(x_{0}-\delta \ge r)\) and some \(m\in {\mathbb {N}} _{0}.\) If \(q_{-}^{(j)}(x_{0})={\widetilde{q}}_{-}^{(j)}(x_{0})\) for \( j=0,1,\ldots ,m,\) then

$$\begin{aligned}&y_{1,r}(x_{0},\lambda ){\widetilde{y}}_{1,r}^{\prime }(x_{0},\lambda )-y_{1,r}^{\prime }(x_{0},\lambda ){\widetilde{y}}_{1,r}(x_{0},\lambda ) \nonumber \\&\quad =o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \left( x_{0}-r\right) \right) }{\left| \sqrt{\lambda }\right| ^{m+1}} \right) , \end{aligned}$$
(3.40)
$$\begin{aligned}&y_{1,r}(x_{0},\lambda ){\widetilde{y}}_{2,r}^{\prime }(x_{0},\lambda )-y_{1,r}^{\prime }(x_{0},\lambda ){\widetilde{y}}_{2,r}(x_{0},\lambda ) \nonumber \\&\quad =o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \left( x_{0}-r\right) \right) }{\left| \sqrt{\lambda }\right| ^{m+2}} \right) , \end{aligned}$$
(3.41)
$$\begin{aligned}&{\widetilde{y}}_{1,r}^{\prime }(x_{0},\lambda )y_{2,r}(x_{0},\lambda )- {\widetilde{y}}_{1,r}(x_{0},\lambda )y_{2,r}^{\prime }(x_{0},\lambda ) \nonumber \\&\quad =o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \left( x_{0}-r\right) \right) }{\left| \sqrt{\lambda }\right| ^{m+2}} \right) , \end{aligned}$$
(3.42)
$$\begin{aligned}&y_{2,r}(x_{0},\lambda ){\widetilde{y}}_{2,r}^{\prime }(x_{0},\lambda )-y_{2,r}^{\prime }(x_{0},\lambda ){\widetilde{y}}_{2,r}(x_{0},\lambda ) \nonumber \\&\quad =o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \left( x_{0}-r\right) \right) }{\left| \sqrt{\lambda }\right| ^{m+3}} \right) \end{aligned}$$
(3.43)

as \(\left| \lambda \right| \rightarrow \infty \) in \(\Lambda _{\zeta }:=\left\{ \lambda \in {\mathbb {C}}{:}\,\zeta<\text {Arg}(\lambda )<\pi -\zeta \text { for }\zeta >0\right\} .\)

Remark 13

For \(f\in \)\(C^{m}\left[ x_{0}-\delta ,x_{0}\right] ,\) we adopt following notations in this section:

$$\begin{aligned} f_{-}^{(0)}(x_{0}):= & {} f(x_{0}),\text { }f_{-}^{(1)}(x_{0}):=\lim \limits _{x \rightarrow x_{0}^{-}}\frac{f(x)-f(x_{0})}{x-x_{0}}, \\ f_{-}^{(j)}(x_{0}):= & {} \lim \limits _{x\rightarrow x_{0}^{-}}\frac{ f^{(j-1)}(x)-f_{-}^{(j-1)}(x_{0})}{x-x_{0}}\text { for }j=2,3,\ldots ,m. \end{aligned}$$

In addition, \(f\in \)\(C^{m}\left[ x_{0}-\delta ,x_{0}\right] \) implies \(\lim \nolimits _{x\rightarrow x_{0}^{-}}f^{(j)}(x)=f_{-}^{(j)}(x_{0})\) for \( j=0,1,\ldots ,m.\)

The proof of Proposition 1 will be given at the end of this “Appendix” after the proof of the following lemma.

Lemma 7

Let \(x_{0}\in \left( 0,\pi \right] \) and \(q,\,{\widetilde{q}} \in C^{m}\left[ 0,x_{0}\right] \) for some \(m\in {\mathbb {N}} _{0}.\) If

$$\begin{aligned} q_{-}^{(j)}(x_{0})={\widetilde{q}}_{-}^{(j)}(x_{0}) \end{aligned}$$
(3.44)

for \(j=0,1,\ldots ,m,\) then

$$\begin{aligned} y_{2}(x_{0},\lambda ){\widetilde{y}}_{2}^{\prime }(x_{0},\lambda )-y_{2}^{\prime }(x_{0},\lambda ){\widetilde{y}}_{2}(x_{0},\lambda )= & {} o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x_{0}\right) }{\left| \sqrt{\lambda }\right| ^{m+3}}\right) , \end{aligned}$$
(3.45)
$$\begin{aligned} y_{1}(x_{0},\lambda ){\widetilde{y}}_{1}^{\prime }(x_{0},\lambda )-y_{1}^{\prime }(x_{0},\lambda ){\widetilde{y}}_{1}(x_{0},\lambda )= & {} o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x_{0}\right) }{\left( \sqrt{\lambda }\right) ^{m+1}}\right) , \end{aligned}$$
(3.46)
$$\begin{aligned} y_{1}(x_{0},\lambda ){\widetilde{y}}_{2}^{\prime }(x_{0},\lambda )-y_{1}^{\prime }(x_{0},\lambda ){\widetilde{y}}_{2}(x_{0},\lambda )= & {} o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x_{0}\right) }{\left| \sqrt{\lambda }\right| ^{m+2}}\right) , \end{aligned}$$
(3.47)
$$\begin{aligned} {\widetilde{y}}_{1}^{\prime }(x_{0},\lambda )y_{2}(x_{0},\lambda )-\widetilde{y }_{1}(x_{0},\lambda )y_{2}^{\prime }(x_{0},\lambda )= & {} o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x_{0}\right) }{ \left| \sqrt{\lambda }\right| ^{m+2}}\right) \end{aligned}$$
(3.48)

as \(\left| \lambda \right| \rightarrow \infty \) in the sector \( \Lambda _{\zeta }.\)

We shall prove Lemma 7 by analyzing the asymptotic expansion of the fundamental solutions (see Lemmas 89). Now we first give some preliminary facts and notations.

Recall the solution \(y_{2}\) defined by Definition 1, then it follows from [26] that

$$\begin{aligned} y_{2}(x,\lambda )=\sum \limits _{p=0}^{\infty }S_{p}(x,\lambda ), y_{2}^{\prime }(x,\lambda )=\sum \limits _{p=0}^{\infty }C_{p}(x,\lambda ), \end{aligned}$$
(3.49)

where \(S_{0}(x,\lambda )=\frac{\sin (\sqrt{\lambda }x)}{\sqrt{\lambda }},\, C_{0}(x,\lambda )=\cos \left( \sqrt{\lambda }x\right) ,\) and for \(p\ge 1,\)

$$\begin{aligned} S_{p}(x,\lambda )= & {} \int _{0}^{x}\frac{\sin (\sqrt{\lambda }\left( x-t\right) )}{\sqrt{\lambda }}q(t)S_{p-1}(t,\lambda )\mathrm {d}t, \end{aligned}$$
(3.50)
$$\begin{aligned} C_{p}(x,\lambda )= & {} \int _{0}^{x}\cos \left( \sqrt{\lambda }\left( x-t\right) \right) q(t)S_{p-1}(t,\lambda )\mathrm {d}t. \end{aligned}$$
(3.51)

In what follows, we adopt the following notations: \(\left( \pm \right) _{j}=\left\{ \begin{array}{ll} -1&{}\quad \text {if}\,j=4s,4s+1, \\ 1&{}\quad \text {if}\,j=4s+2,4s+3, \end{array} \right. \) and

$$\begin{aligned} \nu _{2s}(x,\lambda ):=\frac{\sin (\sqrt{\lambda }x)}{\left( 2\sqrt{\lambda } \right) ^{2s}},\nu _{2s+1}(x,\lambda ):=\frac{\cos (\sqrt{\lambda }x) }{\left( 2\sqrt{\lambda }\right) ^{2s+1}},s\in {\mathbb {N}} _{0}. \end{aligned}$$

Then we have the following statement relating to \(S_{p}\) defined by (3.50).

Lemma 8

Assume that q\(\in \)\(C^{m}\left[ 0,\delta \right] \) for some \( \delta >0\) and some \(m\in {\mathbb {N}}.\) Denote \(\sigma \left( x\right) :=\int _{0}^{x}q(t)\mathrm {d}t.\) Then for \( x\in \left[ 0,\delta \right] ,\) we have

$$\begin{aligned}&S_{1}(x,\lambda )=\sum \limits _{j=1}^{m+1}\frac{\nu _{j}(x,\lambda )}{\sqrt{ \lambda }}f_{1,j}\left( x\right) +\frac{\left( \pm \right) _{m+2}}{\sqrt{ \lambda }}\int _{0}^{x}\nu _{m+1}(x-2t,\lambda )q^{\left( m\right) }(t)dt, \qquad \qquad \end{aligned}$$
(3.52)
$$\begin{aligned}&S_{2}(x,\lambda )=\sum \limits _{j=1}^{m+2}\frac{\nu _{j}(x,\lambda )}{\sqrt{ \lambda }}f_{2,j}\left( x\right) +B_{2}\left( x,\lambda \right) , \end{aligned}$$
(3.53)
$$\begin{aligned}&S_{p}(x,\lambda )=\sum \limits _{j=1}^{m+2}\frac{\nu _{j}(x,\lambda )}{\sqrt{ \lambda }}f_{p,j}\left( x\right) +B_{p}\left( x,\lambda \right) \text { for } p=3,\ldots ,m+2 \end{aligned}$$
(3.54)

where

$$\begin{aligned} B_{2}\left( x,\lambda \right)= & {} -\frac{\left( \pm \right) _{m+3}}{\sqrt{ \lambda }}\int _{0}^{x}\nu _{m+2}(x-2t,\lambda )\left( \sum \limits _{j=1}^{m+1}\left( \pm \right) _{j}\left( q(t)f_{1,j}(t)\right) ^{\left( m+1-j\right) }\right) dt \\&+\,\frac{\left( \pm \right) _{m+2}}{\sqrt{\lambda }}\int _{0}^{x}\frac{\sin \sqrt{\lambda }\left( x-t\right) }{\sqrt{\lambda }}q(t)\int _{0}^{t}\nu _{m+1}(t-2s,\lambda )q^{\left( m\right) }(s)dsdt, \\ B_{p}\left( x,\lambda \right)= & {} -\frac{\left( \pm \right) _{m+3}}{\sqrt{ \lambda }}\int _{0}^{x}\nu _{m+2}(x-2t,\lambda )\sum \limits _{j=1}^{m+1}\left( \pm \right) _{j}\left( q(t)f_{p-1,j}(t)\right) ^{\left( m+1-j\right) }(t)dt \\&+\,\int _{0}^{x}\frac{\sin (\sqrt{\lambda }\left( x-t\right) )}{\sqrt{\lambda }}q(t)\left[ \frac{\nu _{m+2}(t,\lambda )}{\sqrt{\lambda }} f_{p-1,m+2}(t)+B_{p-1}\left( t,\lambda \right) \right] \mathrm {d}t \end{aligned}$$

for \(p=3,\ldots m+2,\) and the functions \(f_{p,j}\left( x\right) \) are defined by the recurrence relations

$$\begin{aligned} f_{1,j}\left( x\right)= & {} \left( \pm \right) _{j}\left( \sigma ^{\left( j-1\right) }\left( x\right) -(-1)^{j-1}\sigma ^{\left( j-1\right) }\left( 0\right) \right) , \\ f_{p,p}\left( x\right)= & {} (-1)^{p}\int _{0}^{x}q(t)f_{p-1,p-1}(t)dt\ \text {for }p=2,\ldots ,m+2, \\ f_{p,j}\left( x\right)= & {} -\sum \limits _{s=1}^{j-2}\left( \pm \right) _{s}\left( \pm \right) _{j}\left( \left( qf_{p-1,s}\right) ^{\left( j-s-2\right) }\left( x\right) -(-1)^{j-1}\left( qf_{p-1,s}\right) ^{\left( j-s-2\right) }\left( 0\right) \right) \\&+\,(-1)^{j}\int _{0}^{x}q(t)f_{p-1,j-1}(t)dt\ \text {for }j>p\ \text {and } p=2,\ldots ,m+2, \\ f_{p,j}\left( x\right)= & {} 0\text { for }j<p. \end{aligned}$$

Moreover\(,\,f_{p,j}\in C^{m+p-j+1}\left[ 0,\delta \right] .\)

Proof

In order to prove this lemma, we will follow the technique in [27, Lemma 4.2 ]. We first note that

$$\begin{aligned} \frac{\sin (\sqrt{\lambda }\left( x-t\right) )}{\sqrt{\lambda }}\nu _{j}(t,\lambda )=\left( -1\right) ^{j+1}\nu _{j+1}(x,\lambda )+\nu _{j+1}(x-2t,\lambda ) \end{aligned}$$
(3.55)

and for \(f\in C^{1}\left[ 0,x\right] ,\)

$$\begin{aligned}&\int _{0}^{x}\nu _{j}(x-2t,\lambda )f(t)dt \nonumber \\&\quad =\nu _{j+1}(x,\lambda )\left( f\left( x\right) -\left( -1\right) ^{j}f\left( 0\right) \right) +\left( -1\right) ^{j+1}\int _{0}^{x}\nu _{j+1}(x-2t,\lambda )f^{\prime }(t)dt.\nonumber \\ \end{aligned}$$
(3.56)

In view of (3.55) and (3.56), one can easily deduce the expression (3.52). Now we turn to deduce the expressions for the other functions \(S_{j}.\) Suppose that \( f_{j}\in C^{m+1-j}\left[ 0,x\right] ,\) then from (3.55), we know that for \(j=1,\ldots ,m+1,\)

$$\begin{aligned}&\int _{0}^{x}\frac{\sin (\sqrt{\lambda }\left( x-t\right) )}{\sqrt{\lambda } }\nu _{j}(t,\lambda )f_{j}(t)dt \nonumber \\&\quad =\left( -1\right) ^{j+1}\nu _{j+1}(x,\lambda )\int _{0}^{x}f_{j}(t)dt+\int _{0}^{x}\nu _{j+1}(x-2t,\lambda )f_{j}(t)dt,\qquad \end{aligned}$$
(3.57)

Moreover, integrating by parts the second summand on the right-hand side of the above equality \(m+1-j\) times and using (3.55), it follows that for \(j=1,\ldots ,m,\)

$$\begin{aligned}&\int _{0}^{x}\frac{\sin (\sqrt{\lambda }\left( x-t\right) )}{\sqrt{\lambda } }\nu _{j}(t,\lambda )f_{j}(t)dt \nonumber \\= & {} \left( -1\right) ^{j+1}\nu _{j+1}(x,\lambda )\int _{0}^{x}f_{j}(t)dt\nonumber \\&-\sum _{s=j+2}^{m+2}\nu _{s}(x,\lambda )\left( \pm \right) _{j}\left( \pm \right) _{s}(f_{j}^{\left( s-j-2\right) }\left( x\right) -(-1)^{s-1}f_{j}^{\left( s-j-2\right) }\left( 0\right) ) \nonumber \\&\qquad -\left( \pm \right) _{j}\left( \pm \right) _{m+3}\int _{0}^{x}\nu _{m+2}(x-2t,\lambda )f_{j}^{\left( m+1-j\right) }(t)dt. \end{aligned}$$
(3.58)

Therefore, by virtue of (3.57) (for \(j=m+1)\) and (3.58), for \(x\in \left( 0,\delta \right] \) we have

$$\begin{aligned}&\sum \limits _{j=1}^{m+1}\int _{0}^{x}\frac{\sin (\sqrt{\lambda }\left( x-t\right) )}{\sqrt{\lambda }}\nu _{j}(t,\lambda )f_{j}(t)dt \nonumber \\= & {} \nu _{2}(x,\lambda )\int _{0}^{x}f_{1}(t)dt +\sum _{j=3}^{m+2}\nu _{j}(x,\lambda )\left( \left( -1\right) ^{j}\int _{0}^{x}f_{j-1}(t)dt\right. \nonumber \\&\qquad \left. -\sum \limits _{s=1}^{j-2}\left( \pm \right) _{s}\left( \pm \right) _{j}(f_{s}^{\left( j-s-2\right) }\left( x\right) -(-1)^{j-1}f_{s}^{\left( j-s-2\right) }\left( 0\right) )\right) \nonumber \\&\qquad -\left( \pm \right) _{m+3}\int _{0}^{x}\nu _{m+2}(x-2t,\lambda )\sum \limits _{j=1}^{m+1}\left( \pm \right) _{j}f_{j}^{\left( m+1-j\right) }(t)dt. \end{aligned}$$
(3.59)

Now in view of (3.50) and (3.52), we obtain that for \(x\in \left( 0,\delta \right] ,\)

$$\begin{aligned} S_{2}(x,\lambda )= & {} \frac{1}{\sqrt{\lambda }}\sum \limits _{j=1}^{m+1} \int _{0}^{x}\frac{\sin (\sqrt{\lambda }\left( x-t\right) )}{\sqrt{\lambda }} \nu _{j}(t,\lambda )q(t)f_{1,j}(t)\mathrm {d}t \\&+\,\frac{\left( \pm \right) _{m+2}}{\sqrt{\lambda }}\int _{0}^{x}\frac{\sin \sqrt{\lambda }\left( x-t\right) }{\sqrt{\lambda }}q(t)\int _{0}^{t}\nu _{m+1}(t-2s,\lambda )q^{\left( m\right) }(s)dsdt. \end{aligned}$$

Making use of (3.59) with \(f_{j}(t)\) replaced by \( q(t)f_{1,j}(t)\) and in virtue of the fact \(qf_{1,j}\in C^{m+1-j}\left[ 0,\delta \right] \) for j\(=1,\ldots ,m+1,\) we obtain (3.53). Next, from (3.50) and (3.53), it follows that for \(x\in \left( 0,\delta \right] ,\)

$$\begin{aligned} S_{3}(x,\lambda )= & {} \frac{1}{\sqrt{\lambda }}\sum \limits _{j=1}^{m+1} \int _{0}^{x}\frac{\sin (\sqrt{\lambda }\left( x-t\right) )}{\sqrt{\lambda }} \nu _{j}(t,\lambda )q(t)f_{2,j}(t)\mathrm {d}t \\&+\,\int _{0}^{x}\frac{\sin (\sqrt{\lambda }\left( x-t\right) )}{\sqrt{\lambda }}q(t)\left[ \frac{\nu _{m+2}(t,\lambda )}{\sqrt{\lambda }} f_{2,m+2}(t)+B_{2}\left( t,\lambda \right) \right] \mathrm {d}t. \end{aligned}$$

Then the expression (3.54) for \(S_{3}\) can be proved by using (3.59) and letting \(f_{j}(t):=q(t)f_{2,j}(t).\) The proof of the relation (3.54) for \(p=4,\ldots ,m+2\) can be carried out in the same way. \(\square \)

As a consequence of Lemma 8, we have the following assertion relating to \(C_{p}\) defined by (3.51).

Lemma 9

Assume that q\(\in \)\(C^{m}\left[ 0,\delta \right] \) for some \( \delta >0\) and some \(m\in {\mathbb {N}}.\) Denote \(\sigma \left( x\right) :=\int _{0}^{x}q(t)\mathrm {d}t.\) Then for \( x\in \left[ 0,\delta \right] ,\) we have

$$\begin{aligned} C_{1}(x,\lambda )= & {} \frac{-f_{1,1}\left( x\right) }{2}\frac{\nu _{0}(x,\lambda )}{\sqrt{\lambda }}+\sum \limits _{j=1}^{m}\frac{\nu _{j}(x,\lambda )}{\sqrt{\lambda }}\left[ f_{1,j}^{\prime }\left( x\right) + \frac{(-1)^{j+1}f_{1,j+1}\left( x\right) }{2}\right] \\&+\,\frac{\left( \pm \right) _{m+2}}{\sqrt{\lambda }}\int _{0}^{x}\frac{d\nu _{m+1}(x-2t,\lambda )}{dx}q^{\left( m\right) }(t)dt, \\ C_{2}(x,\lambda )= & {} \sum \limits _{j=1}^{m+1}\frac{\nu _{j}(x,\lambda )}{ \sqrt{\lambda }}\left[ f_{2,j}^{\prime }\left( x\right) +\frac{ (-1)^{j+1}f_{2,j+1}\left( x\right) }{2}\right] +D_{2}\left( x,\lambda \right) , \\ C_{p}(x,\lambda )= & {} \sum \limits _{j=1}^{m+1}\frac{\nu _{j}(x,\lambda )}{ \sqrt{\lambda }}\left[ f_{p,j}^{\prime }\left( x\right) +\frac{ (-1)^{j+1}f_{p,j+1}\left( x\right) }{2}\right] \\&\quad +\,D_{p}\left( x,\lambda \right) \ \text {for }p=3,\ldots ,m+2 \end{aligned}$$

where \(f_{p,j}\left( x\right) \) are the functions defined in Lemma 8, and

$$\begin{aligned} D_{2}\left( x,\lambda \right)= & {} -\frac{\left( \pm \right) _{m+3}}{\sqrt{ \lambda }}\int _{0}^{x}\frac{d\nu _{m+2}(x-2t,\lambda )}{dx}\left( \sum \limits _{j=1}^{m+1}\left( \pm \right) _{j}\left( q(t)f_{1,j}(t)\right) ^{\left( m+1-j\right) }\right) dt \\&+\,\frac{\left( \pm \right) _{m+2}}{\sqrt{\lambda }}\int _{0}^{x}\cos \sqrt{ \lambda }\left( x-t\right) q(t)\int _{0}^{t}\nu _{m+1}(t-2s,\lambda )q^{\left( m\right) }(s)dsdt, \\ D_{p}\left( x,\lambda \right)= & {} -\frac{\left( \pm \right) _{m+3}}{\sqrt{ \lambda }}\int _{0}^{x}\frac{d\nu _{m+2}(x-2t,\lambda )}{dx} \sum \limits _{j=1}^{m+1}\left( \pm \right) _{j}\left( qf_{p-1,j}\right) ^{\left( m+1-j\right) }(t)dt \\&+\,\int _{0}^{x}\cos \sqrt{\lambda }\left( x-t\right) q(t)\left[ \frac{\nu _{m+2}(t,\lambda )}{\sqrt{\lambda }}f_{p-1,m+2}(t)+B_{p-1}\left( t,\lambda \right) \right] \mathrm {d}t \end{aligned}$$

for \(p=3,\ldots ,m+2.\)

Lemma 10

Assume that q\(\in \)\(C^{m}\left[ 0,\delta \right] \) for some \(\delta >0\) and some \(m\in {\mathbb {N}} _{0}.\) Then for \(x\in \left[ 0,\delta \right] ,\,y_{2}(x,\lambda )\) and \( y_{2}^{\prime }(x,\lambda )\) can be rewritten as the following form:

$$\begin{aligned} y_{2}(x,\lambda )= & {} \frac{\sin \left( \sqrt{\lambda }x\right) }{\sqrt{ \lambda }}+\sum \limits _{j=1}^{m+2}a_{j}\left( x\right) \frac{\nu _{j}(x,\lambda )}{\sqrt{\lambda }} \nonumber \\&+\,\frac{\left( \pm \right) _{m+2}}{\sqrt{\lambda }}\int _{0}^{x}\nu _{m+1}(x-2t,\lambda )q^{\left( m\right) }(t)dt \nonumber \\&+\,\sum \limits _{p=2}^{m+2}B_{p}\left( x,\lambda \right) +\sum \limits _{p=m+3}^{\infty }S_{p}\left( x,\lambda \right) , \end{aligned}$$
(3.60)

and

$$\begin{aligned} y_{2}^{\prime }(x,\lambda )= & {} \cos \left( \sqrt{\lambda }x\right) +\sum \limits _{j=0}^{m+1}b_{j}\left( x\right) \frac{\nu _{j}(x,\lambda )}{ \sqrt{\lambda }} \nonumber \\&+\,\frac{\left( \pm \right) _{m+2}}{\sqrt{\lambda }}\int _{0}^{x}\frac{d\nu _{m+1}(x-2t,\lambda )}{dx}q^{\left( m\right) }(t)dt \nonumber \\&+\,\sum \limits _{p=2}^{m+2}D_{p}\left( x,\lambda \right) +\sum \limits _{p=m+3}^{\infty }C_{p}\left( x,\lambda \right) , \end{aligned}$$
(3.61)

where

$$\begin{aligned} a_{j}\left( x\right) =\sum \limits _{p=1}^{m+2}f_{p,j}\left( x\right) \ \text { for }j=1,\ldots m+1,a_{m+2}\left( x\right) =\sum \limits _{p=2}^{m+2}f_{p,m+2}\left( x\right) , \end{aligned}$$

and

$$\begin{aligned} b_{0}\left( x\right)= & {} \frac{-f_{1,1}\left( x\right) }{2}, b_{m+1}\left( x\right) =\sum \limits _{p=2}^{m+2}\left( f_{p,m+1}^{\prime }\left( x\right) +\frac{(-1)^{m+2}f_{p,m+2}\left( x\right) }{2}\right) , \\ b_{j}\left( x\right)= & {} \sum \limits _{p=1}^{m+2}\left( f_{p,j}^{\prime }\left( x\right) +\frac{(-1)^{j+1}f_{p,j+1}\left( x\right) }{2}\right) , j=1,2,\ldots ,m. \end{aligned}$$

Proof

For \(m\in {\mathbb {N}},\) the expressions (3.60) and (3.61) can be directly obtained from (3.49), Lemmas 8 and 9. For \(m=0,\) the proof can be carried out in the same way even simpler. \(\square \)

Remark 14

For \(g\in L^{1}\left[ 0,x\right] ,\) one notes that the following identities

$$\begin{aligned} \int _{0}^{x}\sin \left( \sqrt{\lambda }t\right) g(t)dt= & {} o\left( \exp \left( \left| \text {Im}\sqrt{\lambda }\right| x\right) \right) , \end{aligned}$$
(3.62)
$$\begin{aligned} \int _{0}^{x}\cos \left( \sqrt{\lambda }t\right) g(t)dt= & {} o\left( \exp \left( \left| \text {Im}\sqrt{\lambda }\right| x\right) \right) \end{aligned}$$
(3.63)

hold as \(\left| \lambda \right| \rightarrow \infty \) [26, P15]. By virtue of (3.62) and (3.63), it is easy to deduce that as \(\left| \lambda \right| \rightarrow \infty ,\)

$$\begin{aligned} B_{p}\left( x,\lambda \right) =o\left( \frac{\exp \left( \left| \text {Im} \sqrt{\lambda }\right| x\right) }{\left| \sqrt{\lambda }\right| ^{m+3}}\right) ,B_{p}^{\prime }\left( x,\lambda \right) =o\left( \frac{\exp \left( \left| \text {Im}\sqrt{\lambda }\right| x\right) }{ \left| \sqrt{\lambda }\right| ^{m+2}}\right) \end{aligned}$$

and

$$\begin{aligned} D_{p}\left( x,\lambda \right) =o\left( \frac{\exp \left( \left| \text {Im} \sqrt{\lambda }\right| x\right) }{\left| \sqrt{\lambda }\right| ^{m+2}}\right) ,D_{p}^{\prime }\left( x,\lambda \right) =o\left( \frac{\exp \left( \left| \text {Im}\sqrt{\lambda }\right| x\right) }{ \left| \sqrt{\lambda }\right| ^{m+1}}\right) \end{aligned}$$

hold for \(p=2,3,\ldots ,m+2.\)

Remark 15

Note that

$$\begin{aligned} S_{p}(x,\lambda )= & {} \int _{0\le t_{1}\le \cdots \le t_{p+1}:=x}\prod \limits _{i=1}^{p}s_{\lambda }(t_{i+1}-t_{i}\,)s_{\lambda }(t_{1})q(t_{i})dt_{1}\cdots dt_{p}, \\ C_{p}(x,\lambda )= & {} \int _{0\le t_{1}\le \cdots \le t_{p+1}:=x}c_{\lambda }(t_{p+1}-t_{p})\prod \limits _{i=1}^{p-1}s_{\lambda }(t_{i+1}-t_{i}\,)s_{\lambda }(t_{1})q(t_{i})dt_{1}\cdots dt_{p}, \end{aligned}$$

where \(s_{\lambda }(x):=\frac{\sin (\sqrt{\lambda }x)}{\sqrt{\lambda }},c_{\lambda }(x):=\cos (\sqrt{\lambda }x),\) and

$$\begin{aligned} \left| \frac{\sin (\sqrt{\lambda }x)}{\sqrt{\lambda }}\right| \le \frac{\exp \left( \left| \text {Im}\sqrt{\lambda }\right| x\right) }{ \left| \sqrt{\lambda }\right| },\left| \cos (\sqrt{ \lambda }x)\right| \le \exp \left( \left| \text {Im}\sqrt{\lambda } \right| x\right) . \end{aligned}$$

Thus for \(\lambda \in {\mathbb {C}} \) and \(\left| \lambda \right| \) being large enough,  one has

$$\begin{aligned} \left| S_{p}(x,\lambda )\right|\le & {} \frac{\exp \left( \left| \text {Im}\sqrt{\lambda }\right| x\right) }{\left| \sqrt{\lambda } \right| ^{m+4}}\frac{\left( \int _{0}^{x}\left| q(t)\right| dt\right) ^{p}}{p!},p\ge m+3, \\ \left| C_{p}(x,\lambda )\right|\le & {} \frac{\exp \left( \left| \text {Im}\sqrt{\lambda }\right| x\right) }{\left| \sqrt{\lambda } \right| ^{m+3}}\frac{\left( \int _{0}^{x}\left| q(t)\right| dt\right) ^{p}}{p!},\text { }p\ge m+3. \end{aligned}$$

This directly yields that as \(\left| \lambda \right| \rightarrow \infty ,\)

$$\begin{aligned} \sum \limits _{p=m+3}^{\infty }S_{p}(x,\lambda )=O\left( \frac{\exp \left( \left| \text {Im}\sqrt{\lambda }\right| x\right) }{\left| \sqrt{ \lambda }\right| ^{m+4}}\right) ,\text { }\sum \limits _{p=m+3}^{\infty }C_{p}(x,\lambda )=O\left( \frac{\exp \left( \left| \text {Im}\sqrt{ \lambda }\right| x\right) }{\left| \sqrt{\lambda }\right| ^{m+3}} \right) . \end{aligned}$$

Similarly, one can also obtain that \(\sum \limits _{p=m+3}^{\infty }C_{p}^{\prime }(x,\lambda )=O\left( \frac{\exp \left( \left| \text {Im} \sqrt{\lambda }\right| x\right) }{\left| \sqrt{\lambda }\right| ^{m+2}}\right) \) as \(\left| \lambda \right| \rightarrow \infty .\)

Now we turn to prove Lemma 7.

Proof of Lemma 7

We only aim to prove the relation (3.45), since the other statements can be treated similarly. We first denote

$$\begin{aligned} g\left( x\right) :=\left\{ \begin{array}{l} q\left( x\right) ,x\in \left[ 0,x_{0}\right] , \\ s\left( x\right) ,x\in \left( x_{0},x_{0}+\delta \right] , \end{array} \right. {\widetilde{g}}\left( x\right) :=\left\{ \begin{array}{l} {\widetilde{q}}\left( x\right) ,x\in \left[ 0,x_{0}\right] , \\ s\left( x\right) ,x\in \left( x_{0},x_{0}+\delta \right] , \end{array} \right. \end{aligned}$$

where \(s\left( x\right) =\sum \limits _{j=0}^{m}q_{-}^{(j)}(x_{0})\left( x-x_{0}\right) ^{j}\) and \(\delta \) is some positive constant. Then by (3.44) it is easy to see that \(g,\,{\widetilde{g}}\)\(\in \)\( C^{m}\left[ 0,x_{0}+\delta \right] \) and

$$\begin{aligned} g^{\left( j\right) }(x_{0})=q_{-}^{(j)}(x_{0})={\widetilde{g}}^{\left( j\right) }(x_{0})\text { for }j=0,1,\ldots ,m. \end{aligned}$$
(3.64)

For \(i=1,2,\) let \(w_{2}(x,\lambda )\) and \({\widetilde{w}}_{2}(x,\lambda )\) be the fundamental solutions of the equations

$$\begin{aligned} -\,y^{\prime \prime }+g\left( x\right) y=\lambda y\text { and}-y^{\prime \prime }+{\widetilde{g}}\left( x\right) y=\lambda y,x\in \left( 0,x_{0}+\delta \right) \end{aligned}$$

respectively, where \(w_{2}(x,\lambda )\) and \({\widetilde{w}}_{2}(x,\lambda )\) are determined by the initial conditions

$$\begin{aligned} w_{2}(0,\lambda )={\widetilde{w}}_{2}(0,\lambda )=0, w_{2}^{\prime }(0,\lambda )={\widetilde{w}}_{2}^{\prime }(0,\lambda )=1. \end{aligned}$$

By (3.60), (3.61), Lemmas 8, 9, Remarks 14 and 15,  it is easy to see that there exist functions \(r_{k},u_{k},z_{k}\in C^{1}\left[ 0,x_{0}+\delta \right] \) such that for \(x\in \left[ 0,x_{0}+\delta \right] ,\)

$$\begin{aligned}&w_{2}(x,\lambda ){\widetilde{w}}_{2}^{\prime }(x,\lambda )-w_{2}^{\prime }(x,\lambda ){\widetilde{w}}_{2}(x,\lambda ) \nonumber \\&\quad =\sum \limits _{k=0}^{m+3}r_{k}(x)\frac{\sin \left( \sqrt{\lambda }x\right) \cos \left( \sqrt{\lambda }x\right) }{\left( \sqrt{\lambda }\right) ^{k}} +\sum \limits _{k=0}^{m+3}u_{k}(x)\frac{\cos ^{2}\left( \sqrt{\lambda } x\right) }{\left( \sqrt{\lambda }\right) ^{k}} \nonumber \\&\qquad +\,\sum \limits _{k=0}^{m+3}z_{k}(x)\frac{\sin ^{2}\left( \sqrt{\lambda } x\right) }{\left( \sqrt{\lambda }\right) ^{k}}+\frac{\left( \pm \right) _{m+2}}{\sqrt{\lambda }}I_{1}\left( x,\lambda \right) +I_{2}\left( x,\lambda \right) \end{aligned}$$
(3.65)

where

$$\begin{aligned} I_{1}\left( x,\lambda \right)= & {} \frac{\sin \left( \sqrt{\lambda }x\right) }{ \sqrt{\lambda }}\int _{0}^{x}\frac{d\nu _{m+1}(x-2t,\lambda )}{dx}\left( {\widetilde{g}}^{\left( m\right) }(t)-g^{\left( m\right) }(t)\right) dt \nonumber \\&+\,\cos \left( \sqrt{\lambda }x\right) \int _{0}^{x}\nu _{m+1}(x-2t,\lambda )\left( g^{\left( m\right) }(t)-{\widetilde{g}}^{\left( m\right) }(t)\right) dt \nonumber \\= & {} \left\{ \begin{array}{c} \int _{0}^{x}\frac{\cos \left( 2\sqrt{\lambda }t\right) }{\left( 2\sqrt{ \lambda }\right) ^{m+1}}\left( g^{\left( m\right) }(t)-{\widetilde{g}}^{\left( m\right) }(t)\right) dt\text { if }m\ \text {is even}, \\ \int _{0}^{x}\frac{\sin \left( 2\sqrt{\lambda }t\right) }{\left( 2\sqrt{ \lambda }\right) ^{m+1}}\left( {\widetilde{g}}^{\left( m\right) }(t)-g^{\left( m\right) }(t)\right) dt\text { if }m\ \text {is odd}, \end{array} \right. \end{aligned}$$
(3.66)

and as \(\left| \lambda \right| \rightarrow \infty ,\,I_{2}\left( x,\lambda \right) =o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{ \lambda }\right| x\right) }{\left| \sqrt{\lambda }\right| ^{m+3}} \right) ,\,I_{2}^{\prime }\left( x,\lambda \right) =o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x\right) }{\left| \sqrt{\lambda }\right| ^{m+2}}\right) \).

In view of (3.65) and the fact \(g={\widetilde{g}}\) on \( \left[ x_{0},x_{0}+\delta \right] ,\) for \(x\in \left[ x_{0},x_{0}+\delta \right] ,\) one has

$$\begin{aligned}&\left( w_{2}(x,\lambda ){\widetilde{w}}_{2}^{\prime }(x,\lambda )-w_{2}^{\prime }(x,\lambda ){\widetilde{w}}_{2}(x,\lambda )\right) ^{\prime } \\&\quad =r_{0}(x)\sqrt{\lambda }\cos \left( 2\sqrt{\lambda }x\right) -\left( u_{0}(x)-z_{0}(x)\right) \sqrt{\lambda }\sin \left( 2\sqrt{\lambda }x\right) \\&\qquad +\,\sum \limits _{k=0}^{m+2}\frac{u_{k}^{\prime }(x)+z_{k}^{\prime }(x)}{ 2\left( \sqrt{\lambda }\right) ^{k}}+\sum \limits _{k=0}^{m+2}\left( r_{k+1}(x)+\frac{u_{k}^{\prime }(x)-z_{k}^{\prime }(x)}{2}\right) \frac{\cos \left( 2\sqrt{\lambda }x\right) }{\left( \sqrt{\lambda }\right) ^{k}} \\&\qquad -\,\sum \limits _{k=0}^{m+2}\left( u_{k+1}(x)-z_{k+1}(x)-\frac{r_{k}^{\prime }(x)}{2}\right) \frac{\sin \left( 2\sqrt{\lambda }x\right) }{\left( \sqrt{ \lambda }\right) ^{k}}+o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{ \lambda }\right| x\right) }{\left| \sqrt{\lambda }\right| ^{m+2}} \right) \\&\quad =0. \end{aligned}$$

This forces that for \(x\in \left[ x_{0},x_{0}+\delta \right] ,\, u_{0}(x)-z_{0}(x)=r_{0}(x)\equiv 0,\)

$$\begin{aligned} r_{k+1}(x)+\frac{u_{k}^{\prime }(x)-z_{k}^{\prime }(x)}{2}=0,\text { } u_{k+1}(x)-z_{k+1}(x)-\frac{r_{k}^{\prime }(x)}{2}=0\ \text {for }k=0,\ldots ,m+2, \end{aligned}$$

and thus for \(k=0,1,\ldots ,m+3\) and \(x\in \left[ x_{0},x_{0}+\delta \right] ,\) one has

$$\begin{aligned} u_{k}(x)-z_{k}(x)=r_{k}(x)\equiv 0. \end{aligned}$$
(3.67)

Therefore, by (3.65) and (3.67) we infer that

$$\begin{aligned}&w_{2}(x_{0},\lambda ){\widetilde{w}}_{2}^{\prime }(x_{0},\lambda )-w_{2}^{\prime }(x_{0},\lambda ){\widetilde{w}}_{2}(x_{0},\lambda ) \nonumber \\&\quad =\sum \limits _{k=0}^{m+3}\frac{u_{k}(x_{0})}{\left( \sqrt{\lambda }\right) ^{k}}+\frac{\left( \pm \right) _{m+2}}{\sqrt{\lambda }}I_{1}\left( x_{0},\lambda \right) +o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{ \lambda }\right| x_{0}\right) }{\left| \sqrt{\lambda }\right| ^{m+3}}\right) . \end{aligned}$$
(3.68)

Next, we aim to show that

$$\begin{aligned} I_{1}\left( x_{0},\lambda \right) =o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x_{0}\right) }{\left| \sqrt{\lambda } \right| ^{m+2}}\right) \end{aligned}$$
(3.69)

as \(\left| \lambda \right| \rightarrow \infty \) in the sector \( \Lambda _{\zeta }.\) Due to the definition (3.66) of \(I_{1}\left( x,\lambda \right) \), it is sufficient to prove

$$\begin{aligned} \int _{0}^{x_{0}}\cos \left( 2\sqrt{\lambda }t\right) \left( g^{\left( m\right) }(t)-{\widetilde{g}}^{\left( m\right) }(t)\right) dt= & {} o\left( \frac{ \exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x_{0}\right) }{ \left| \sqrt{\lambda }\right| }\right) , \end{aligned}$$
(3.70)
$$\begin{aligned} \int _{0}^{x_{0}}\sin \left( 2\sqrt{\lambda }t\right) \left( g^{\left( m\right) }(t)-{\widetilde{g}}^{\left( m\right) }(t)\right) dt= & {} o\left( \frac{ \exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x_{0}\right) }{ \left| \sqrt{\lambda }\right| }\right) . \end{aligned}$$
(3.71)

In fact, by (3.64) \(\left( \text {for }j=m\right) \) and the fact \(g,\,{\widetilde{g}}\)\(\in \)\(C^{m}\left[ 0,x_{0}+\delta \right] \) we infer that given any \(\epsilon >0,\) there exists a sufficiently small constant \(\delta _{0}>0\) such that

$$\begin{aligned} \left| g^{\left( m\right) }(t)-{\widetilde{g}}^{\left( m\right) }(t)\right| <\epsilon \text { on }\left[ x_{0}-\delta _{0},x_{0}\right] , \end{aligned}$$

and thus for \(\lambda \in \Lambda _{\zeta }\) and \(\left| \lambda \right| \) being sufficiently large, we obtain

$$\begin{aligned}&\left| \int _{0}^{x_{0}}\cos \left( 2\sqrt{\lambda }t\right) \left( g^{\left( m\right) }(t)-{\widetilde{g}}^{\left( m\right) }(t)\right) dt\right| \\&\quad \le \max _{t\in \left[ 0,x_{0}\right] }\left| g^{\left( m\right) }(t)- {\widetilde{g}}^{\left( m\right) }(t)\right| \int _{0}^{x_{0}-\delta _{0}}\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| t\right) dt\\&\qquad +\epsilon \int _{x_{0}-\delta _{0}}^{x_{0}}\exp \left( 2\left| \text {Im} \sqrt{\lambda }\right| t\right) dt \\&\quad \le \max _{t\in \left[ 0,x_{0}\right] }\left| g^{\left( m\right) }(t)- {\widetilde{g}}^{\left( m\right) }(t)\right| \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \left( x_{0}-\delta _{0}\right) \right) }{2\left| \text {Im}\sqrt{\lambda }\right| }+\epsilon \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x_{0}\right) }{ 2\left| \text {Im}\sqrt{\lambda }\right| } \\&\quad \le \frac{\max \limits _{t\in \left[ 0,x_{0}\right] }\left| g^{\left( m\right) }(t)-{\widetilde{g}}^{\left( m\right) }(t)\right| }{2\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \delta _{0}\right) }\frac{ \exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x_{0}\right) }{ \left| \text {Im}\sqrt{\lambda }\right| }+\frac{\epsilon }{2\sin \frac{\zeta }{2}}\frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda } \right| x_{0}\right) }{\left| \sqrt{\lambda }\right| } \\&\quad \le \frac{\epsilon }{\sin \frac{\zeta }{2}}\frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x_{0}\right) }{\left| \sqrt{\lambda } \right| }, \end{aligned}$$

where we have used \(\left| \cos \left( 2\sqrt{\lambda }t\right) \right| \le \exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \left| t\right| \right) \) for \(\lambda \in {\mathbb {C}},t\in {\mathbb {R}} \) and

$$\begin{aligned} \left| \text {Im}\sqrt{\lambda }\right| \ge \left| \sqrt{\lambda }\right| \sin \frac{\zeta }{2}\text { for }\lambda \in \Lambda _{\zeta }. \end{aligned}$$
(3.72)

This proves the equality (3.70). Note that (3.71) can be treated similarly, and thus (3.69) is proved. Now by (3.68) and (3.69) we have that

$$\begin{aligned} w_{2}(x_{0},\lambda ){\widetilde{w}}_{2}^{\prime }(x_{0},\lambda )-w_{2}^{\prime }(x_{0},\lambda ){\widetilde{w}}_{2}(x_{0},\lambda )=\sum \limits _{k=0}^{m+3}\frac{u_{k}(x_{0})}{2\left( \sqrt{\lambda }\right) ^{k}}+o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda } \right| x_{0}\right) }{\left| \sqrt{\lambda }\right| ^{m+3}} \right) \end{aligned}$$

as \(\left| \lambda \right| \rightarrow \infty \) in the sector \( \Lambda _{\zeta }.\) This together with (3.72) directly yields that

$$\begin{aligned} w_{2}(x_{0},\lambda ){\widetilde{w}}_{2}^{\prime }(x_{0},\lambda )-w_{2}^{\prime }(x_{0},\lambda ){\widetilde{w}}_{2}(x_{0},\lambda )=o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| x_{0}\right) }{\left| \sqrt{\lambda }\right| ^{m+3}}\right) \end{aligned}$$

as \(\left| \lambda \right| \rightarrow \infty \) in the sector \( \Lambda _{\zeta }.\) Now (3.45) is proved by noting that \( w_{2}(x_{0},\lambda )=y_{2}(x_{0},\lambda ),\,{\widetilde{w}} _{2}(x_{0},\lambda )={\widetilde{y}}_{2}(x_{0},\lambda ),\,w_{2}^{\prime }(x_{0},\lambda )=y_{2}^{\prime }(x_{0},\lambda ),\,{\widetilde{w}} _{2}^{\prime }(x_{0},\lambda )={\widetilde{y}}_{2}^{\prime }(x_{0},\lambda ).\)\(\square \)

Proof of Proposition 1

Note that

$$\begin{aligned}&y_{2,r}(x_{0},\lambda ){\widetilde{y}}_{2,r}^{\prime }(x_{0},\lambda )-y_{2,r}^{\prime }(x_{0},\lambda ){\widetilde{y}}_{2,r}(x_{0},\lambda ) \nonumber \\&\quad =B_{1}(\lambda )\left[ y_{1,x_{0}-\delta }(x_{0},\lambda ){\widetilde{y}} _{1,x_{0}-\delta }^{\prime }(x_{0},\lambda )-y_{1,x_{0}-\delta }^{\prime }(x_{0},\lambda ){\widetilde{y}}_{1,x_{0}-\delta }(x_{0},\lambda )\right] \nonumber \\&\qquad +\,B_{2}(\lambda )\left[ y_{1,x_{0}-\delta }(x_{0},\lambda ){\widetilde{y}} _{2,x_{0}-\delta }^{\prime }(x_{0},\lambda )-y_{1,x_{0}-\delta }^{\prime }(x_{0},\lambda ){\widetilde{y}}_{2,x_{0}-\delta }(x_{0},\lambda )\right] \nonumber \\&\qquad +\,B_{3}(\lambda )\left[ {\widetilde{y}}_{1,x_{0}-\delta }^{\prime }(x_{0},\lambda )y_{2,x_{0}-\delta }(x_{0},\lambda )-{\widetilde{y}} _{1,x_{0}-\delta }(x_{0},\lambda )y_{2,x_{0}-\delta }^{\prime }(x_{0},\lambda )\right] \nonumber \\&\qquad +B_{4}(\lambda )\left[ y_{2,x_{0}-\delta }(x_{0},\lambda ){\widetilde{y}} _{2,x_{0}-\delta }^{\prime }(x_{0},\lambda )-y_{2,x_{0}-\delta }^{\prime }(x_{0},\lambda ){\widetilde{y}}_{2,x_{0}-\delta }(x_{0},\lambda )\right] \nonumber \\ \end{aligned}$$
(3.73)

where

$$\begin{aligned} B_{1}(\lambda )= & {} y_{2,r}\left( x_{0}-\delta ,\lambda \right) {\widetilde{y}} _{2,r}\left( x_{0}-\delta ,\lambda \right) =O\left( \left| \lambda ^{-1}\right| \exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \left( x_{0}-\delta -r\right) \right) \right) , \\ B_{2}(\lambda )= & {} y_{2,r}\left( x_{0}-\delta ,\lambda \right) {\widetilde{y}} _{2,r}^{\prime }\left( x_{0}-\delta ,\lambda \right) =O\left( \left| \sqrt{\lambda }\right| ^{-1}\exp \left( 2\left| \text {Im}\sqrt{ \lambda }\right| \left( x_{0}-\delta -r\right) \right) \right) , \\ B_{3}(\lambda )= & {} {\widetilde{y}}_{2,r}\left( x_{0}-\delta ,\lambda \right) y_{2,r}^{\prime }\left( x_{0}-\delta ,\lambda \right) =O\left( \left| \sqrt{\lambda }\right| ^{-1}\exp \left( 2\left| \text {Im}\sqrt{ \lambda }\right| \left( x_{0}-\delta -r\right) \right) \right) , \\ B_{4}(\lambda )= & {} {\widetilde{y}}_{2,r}^{\prime }\left( x_{0}-\delta ,\lambda \right) y_{2,r}^{\prime }\left( x_{0}-\delta ,\lambda \right) =O\left( \exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \left( x_{0}-\delta -r\right) \right) \right) , \end{aligned}$$

which can be obtained from (3.74). Moreover, from Lemma 7, it is easy to see

$$\begin{aligned} y_{1,x_{0}-\delta }(x_{0},\lambda ){\widetilde{y}}_{1,x_{0}-\delta }^{\prime }(x_{0},\lambda )-y_{1,x_{0}-\delta }^{\prime }(x_{0},\lambda ){\widetilde{y}} _{1,x_{0}-\delta }(x_{0},\lambda )= & {} o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \delta \right) }{\left| \sqrt{ \lambda }\right| ^{m+1}}\right) , \\ y_{1,x_{0}-\delta }(x_{0},\lambda ){\widetilde{y}}_{2,x_{0}-\delta }^{\prime }(x_{0},\lambda )-y_{1,x_{0}-\delta }^{\prime }(x_{0},\lambda ){\widetilde{y}} _{2,x_{0}-\delta }(x_{0},\lambda )= & {} o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \delta \right) }{\left| \sqrt{ \lambda }\right| ^{m+2}}\right) , \\ {\widetilde{y}}_{1,x_{0}-\delta }^{\prime }(x_{0},\lambda )y_{2,x_{0}-\delta }(x_{0},\lambda )-{\widetilde{y}}_{1,x_{0}-\delta }(x_{0},\lambda )y_{2,x_{0}-\delta }^{\prime }(x_{0},\lambda )= & {} o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \delta \right) }{\left| \sqrt{\lambda }\right| ^{m+2}}\right) , \\ y_{2,x_{0}-\delta }(x_{0},\lambda ){\widetilde{y}}_{2,x_{0}-\delta }^{\prime }(x_{0},\lambda )-y_{2,x_{0}-\delta }^{\prime }(x_{0},\lambda ){\widetilde{y}} _{2,x_{0}-\delta }(x_{0},\lambda )= & {} o\left( \frac{\exp \left( 2\left| \text {Im}\sqrt{\lambda }\right| \delta \right) }{\left| \sqrt{ \lambda }\right| ^{m+3}}\right) \end{aligned}$$

as \(\left| \lambda \right| \rightarrow \infty \) in \(\Lambda _{\zeta }.\) Thus the equality (3.43) can be directly obtained from (3.73). The statements (3.40)–(3.42) can be proved similarly. \(\square \)

Remark 16

If q and \({\widetilde{q}}\) are both assumed to be in \( L_{ {\mathbb {C}} }^{1}\left[ 0,\pi \right] ,\) then one can easily find that relations (3.40)–(3.43) still hold by taking \(m=-1\). In fact, the equality (3.43) with \(m=-1\) can be obtained by the following asymptotic form [28]:

$$\begin{aligned}&y_{2,r}(x,\lambda ) \nonumber \\&\quad =\frac{\sin (\sqrt{\lambda }\left( x-r\right) )}{\sqrt{\lambda }}-Q\left( x\right) \frac{\cos (\sqrt{\lambda }\left( x-r\right) )}{2\lambda }+o\left( \frac{\exp \left( \left| \text {Im}\sqrt{\lambda }\right| \left( x-r\right) \right) }{\left| \lambda \right| }\right) , \nonumber \\&y_{2,r}^{\prime }(x,\lambda ) \nonumber \\&\quad =\cos (\sqrt{\lambda }\left( x-r\right) )+Q\left( x\right) \frac{\sin ( \sqrt{\lambda }\left( x-r\right) )}{2\sqrt{\lambda }}\nonumber \\&\qquad +\,o\left( \frac{\exp \left( \left| \text {Im}\sqrt{\lambda }\right| \left( x-r\right) \right) }{\left| \sqrt{\lambda }\right| }\right) , \end{aligned}$$
(3.74)

where \(Q\left( x\right) =\int _{r}^{x}q(t)dt.\) (3.40)–(3.42) can be treated similarly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Shi, G. Inverse spectral problems for non-self-adjoint Sturm–Liouville operators with discontinuous boundary conditions. Monatsh Math 191, 395–436 (2020). https://doi.org/10.1007/s00605-019-01357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-019-01357-8

Keywords

Mathematics Subject Classification

Navigation