Skip to main content
Log in

Instability of geophysical flows at arbitrary latitude

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we present an exact solution of the nonlinear governing equations for the geophysical waves propagating above the thermocline toward the east at arbitrary latitude. Based on the short-wavelength instability approach, we demonstrate the criteria for the hydrodynamical instability of such water waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayly, B.J.: Three-dimensional instabilities in quasi-two-dimensional inviscid flows. In: Miksad, R.W., et al. (eds.) Nonlinear Wave Interactions in Fluids, pp. 71–77. ASME, New York (1987)

    Google Scholar 

  2. Bennett, A.: Lagrangian Fluid Dynamics. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  3. Chu, J., Ionescu-Kruse, D., Yang, Y.: Exact solution and instability for geophysical waves at arbitrary latitude. Discrete Contin. Dyn. Syst. 39, 4399–4414 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Chu, J., Ionescu-Kruse, D., Yang, Y.: Exact solution and instability for geophysical waves with centripetal forces and at arbitrary latitude. J. Math. Fluid Mech. 21, 16 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Constantin, A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Constantin, A., Strauss, W.: Pressure beneath a Stokes wave. Comm. Pure Appl. Math. 63, 533–557 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Constantin, A.: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis. CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)

    MATH  Google Scholar 

  9. Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. 117, C05029 (2012)

    Google Scholar 

  10. Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)

    Google Scholar 

  11. Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)

    Google Scholar 

  12. Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)

    Google Scholar 

  13. Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)

    Google Scholar 

  14. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

    MathSciNet  Google Scholar 

  15. Constantin, A., Monismith, S.G.: Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511–528 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Constantin, A., Johnson, R.S.: Steady large-scale ocean flows in spherical coordinates. Oceanography 31, 42–50 (2018)

    Google Scholar 

  17. Constantin, A., Ivanov, R.I.: Equatorial wave-current interactions. Commun. Math. Phys. 370, 1–48 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Constantin, A., Johnson, R.S.: On the nonlinear, three-dimensional structure of equatorial oceanic flows. J. Phys. Oceanogr. 49, 2029–2042 (2019)

    Google Scholar 

  19. Cushman-Roisin, B., Beckers, J.M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, Waltham (2011)

    MATH  Google Scholar 

  20. Fan, L., Gao, H.: Instability of equatorial edge waves in the background flow. Proc. Am. Math. Soc. 145, 765–778 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Fan, L., Gao, H., Xiao, Q.: An exact solution for geophysical trapped waves in the presence of an underlying current. Dyn. Partial Differ. Equ. 15, 201–214 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66, 2204–2206 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Gerstner, F.: Theorie der wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)

    Google Scholar 

  24. Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16, 661–667 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Gill, A.E.: Atmosphere—Ocean Dynamics. Academic Press, London (1982)

    Google Scholar 

  26. Henry, D.: The trajectories of particles in deep-water Stokes waves. Int. Math. Res. Not. 2006, 13 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Henry, D.: On Gerstner’s water wave. J. Nonlinear Math. Phys. 15, 87–95 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Henry, D., Hsu, H.-C.: Instability of equatorial water waves in the \(f\)-plane. Discrete Contin. Dyn. Syst. 35, 909–916 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Henry, D., Hsu, H.-C.: Instability of internal equatorial water waves. J. Differ. Equ. 258, 1015–1024 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Henry, D.: Exact equatorial water waves in the \(f\)-plane. Nonlinear Anal. Real World Appl. 28, 284–289 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Henry, D.: Equatorially trapped nonlinear water waves in a \(\beta \)-plane approximation with centripetal forces. J. Fluid Mech. 804, R1, 11 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Henry, D.: A modified equatorial \(\beta \)-plane approximation modelling nonlinear wave-current interactions. J. Differ. Equ. 263, 2554–2566 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Henry, D.: On three-dimensional Gerstner-like equatorial water waves. Philos. Trans. R. Soc. A 376, 1–16 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Henry, D., Martin, C.-I.: Exact, purely azimuthal stratified equatorial flows in cylindrical coordinates. Dyn. Partial Differ. Equ. 15, 337–349 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Henry, D., Martin, C.-I.: Exact, free-surface equatorial flows with general stratification in spherical coordinates. Arch. Ration. Mech. Anal. 233, 497–512 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Hsu, H.-C.: An exact solution for equatorial waves. Monatsh. Math. 176, 143–152 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(f\)-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(\beta \)-plane approximation. J. Math. Fluid Mech. 17, 699–706 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Ionescu-Kruse, D.: Instability of equatorially trapped waves in stratified water. Ann. Mat. Pura Appl. 195, 585–599 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Ionescu-Kruse, D.: On the short-wavelength stabilities of some geophysical flows. Philos. Trans. R. Soc. A 376, 1–21 (2017)

    MathSciNet  Google Scholar 

  42. Ionescu-Kruse, D.: A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows. J. Differ. Equ. 264, 4650–4668 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Ionescu-Kruse, D.: Local stability for an exact steady purely azimuthal flow which models the antarctic circumpolar current. J. Math. Fluid Mech. 20, 569–579 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Ionescu-Kruse, D., Martin, C.-I.: Local stability for an exact steady purely azimuthal equatorial flow. J. Math. Fluid Mech. 20, 27–34 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Lifschitz, A., Hameiri, E.: Local stability conditions in fluid mechanics. Phys. Fluids 3, 2644–2651 (1991)

    MathSciNet  MATH  Google Scholar 

  46. Pollard, R.T.: Surface waves with rotation: an exact solution. J. Geophys. Res. 75, 5895–5898 (1970)

    MATH  Google Scholar 

  47. Rodriguez-Sanjurjo, A.: Instability of nonlinear wave-current interactions in a modified equatorial \(\beta \)-plane approximation. J. Math. Fluid Mech. 21, R24, 12 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

Yanjuan Yang was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2017B715X14) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX17\(_{-}\)0508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjuan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, Y. Instability of geophysical flows at arbitrary latitude. Monatsh Math 191, 831–842 (2020). https://doi.org/10.1007/s00605-019-01338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-019-01338-x

Keywords

Mathematics Subject Classification

Navigation