We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Exact Solution and Instability for Geophysical Waves with Centripetal Forces and at Arbitrary Latitude

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide, in a \(\beta \)-plane approximation with centripetal forces, an explicit three-dimensional nonlinear solution for geophysical waves propagating at an arbitrary latitude, in the presence of a constant underlying background current. This solution is linearly unstable when the steepness of the wave exceeds a specific threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayly, B.J.: Three-dimensional instabilities in quasi-two-dimensional inviscid flows. In: Miksad, R.W., et al. (eds.) Nonlinear Wave Interactions in Fluids, pp. 71–77. ASME, New York (1987)

    Google Scholar 

  2. Chu, J., Ionescu-Kruse, D., Yang, Y.: Exact solution and instability for geophysical waves at arbitrary latitude. Discrete Contin. Dyn. Syst. (in press)

  3. Constantin, A.: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)

  4. Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012)

    Article  ADS  Google Scholar 

  5. Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)

    Article  ADS  Google Scholar 

  6. Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)

    Article  ADS  Google Scholar 

  7. Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)

    Article  ADS  Google Scholar 

  8. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the equatorial undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935–1945 (2016)

    Article  ADS  Google Scholar 

  10. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the antarctic circumpolar current. J. Phys. Oceanogr. 46, 3585–3594 (2016)

    Article  ADS  Google Scholar 

  11. Constantin, A., Johnson, R.S.: A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline. Phys. Fluids 29, 056604 (2017)

    Article  ADS  Google Scholar 

  12. Constantin, A., Monismith, S.G.: Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511–528 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Cushman-Roisin, B., Beckers, J.M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, Waltham (2011)

    MATH  Google Scholar 

  14. Fan, L., Gao, H.: Instability of equatorial edge waves in the background flow. Proc. Am. Math. Soc. 145, 765–778 (2017)

    Article  MathSciNet  Google Scholar 

  15. Fan, L., Gao, H., Xiao, Q.: An exact solution for geophysical trapped waves in the presence of an underlying current. Dyn. Partial Differ. Equ. 15, 201–214 (2018)

    Article  MathSciNet  Google Scholar 

  16. Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66, 2204–2206 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  17. Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16, 661–667 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gill, A.E.: Atmosphere–Ocean Dynamics. Elsevier, Amsterdam (1982)

    Google Scholar 

  19. Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Henry, D.: Exact equatorial water waves in the \(f\)-plane. Nonlinear Anal. Real World Appl. 28, 284–289 (2016)

    Article  MathSciNet  Google Scholar 

  21. Henry, D.: Equatorially trapped nonlinear water waves in a \(\beta \)-plane approximation with centripetal forces. J. Fluid Mech. 804(R1), 11 (2016)

    MathSciNet  Google Scholar 

  22. Henry, D.: A modified equatorial \(\beta \)-plane approximation modelling nonlinear wave–current interactions. J. Differ. Equ. 263, 2554–2566 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Henry, D.: On three-dimensional Gerstner-like equatorial water waves. Philos. Trans. R. Soc. A 376(2111), 20170088 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Henry, D., Hsu, H.-C.: Instability of equatorial water waves in the \(f\)-plane. Discrete Contin. Dyn. Syst. 35, 909–916 (2015)

    Article  MathSciNet  Google Scholar 

  25. Henry, D., Hsu, H.-C.: Instability of internal equatorial water waves. J. Differ. Equ. 258, 1015–1024 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hsu, H.-C.: An exact solution for equatorial waves. Monatsh. Math. 176, 143–152 (2015)

    Article  MathSciNet  Google Scholar 

  27. Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(f\)-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)

    Article  MathSciNet  Google Scholar 

  28. Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(\beta \)-plane approximation. J. Math. Fluid Mech. 17, 699–706 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ionescu-Kruse, D.: Instability of equatorially trapped waves in stratified water. Ann. Mat. Pura Appl. 195, 585–599 (2016)

    Article  MathSciNet  Google Scholar 

  30. Ionescu-Kruse, D.: Instability of Pollard’s exact solution for geophysical ocean flows. Phys. Fluids 28, 086601 (2016)

    Article  ADS  Google Scholar 

  31. Ionescu-Kruse, D.: On the short-wavelength stabilities of some geophysical flows. Philos. Trans. R. Soc. A 376(2111), 20170090 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ionescu-Kruse, D.: A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows. J. Differ. Equ. 264, 4650–4668 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Johnson, R.S.: Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography. Philos. Trans. R. Soc. A 376(2111), 20170092 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. Leblanc, S.: Local stability of Gerstner’s waves. J. Fluid Mech. 506, 245–254 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  35. Lifschitz, A., Hameiri, E.: Local stability conditions in fluid mechanics. Phys. Fluids 3, 2644–2651 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  36. Matioc, A.-V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A 45, 365501 (2012)

    Article  MathSciNet  Google Scholar 

  37. Matioc, A.-V.: Exact geophysical waves in stratified fluids. Appl. Anal. 92, 2254–2261 (2013)

    Article  MathSciNet  Google Scholar 

  38. Pollard, R.T.: Surface waves with rotation: an exact solution. J. Geophys. Res. 75, 5895–5898 (1970)

    Article  ADS  Google Scholar 

  39. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to show our thanks to the anonymous referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Ionescu-Kruse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Constantin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jifeng Chu was supported by the National Natural Science Foundation of China (Grant No. 11671118 and No. 11871273). Yanjuan Yang was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2017B715X14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, J., Ionescu-Kruse, D. & Yang, Y. Exact Solution and Instability for Geophysical Waves with Centripetal Forces and at Arbitrary Latitude. J. Math. Fluid Mech. 21, 19 (2019). https://doi.org/10.1007/s00021-019-0423-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0423-8

Keywords

Navigation