Skip to main content
Log in

Coorbits for projective representations with an application to Bergman spaces

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Representation theory of locally compact topological groups is a powerful tool to analyze Banach spaces of functions and distributions. It provides a unified framework for constructing function spaces and to study several generalizations of the wavelet transform. Recently representation theory has been used to provide atomic decompositions for a large collection of classical Banach spaces. But in some natural situations, including Bergman spaces on bounded domains, representations are too restrictive. The proper tools are projective representations. In this paper we extend known techniques from representation theory to also include projective representations. This leads naturally to twisted convolution on groups avoiding the usual central extension of the group. As our main application we obtain atomic decompositions of Bergman spaces on the unit ball through the holomorphic discrete series for the group of isometries of the ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aniello, P.: Square integrable projective representations and square integrable representations modulo a relatively central subgroup. Int. J. Geom. Methods Mod. Phys. 3(2), 233–267 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bargmann, V.: On unitary ray representations of continuous groups. Ann. Math. 2(59), 1–46 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chébli, H., Faraut, J.: Fonctions holomorphes à croissance modérée et vecteurs distributions. Math. Z. 248(3), 540–565 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christensen, J.G.: Sampling in reproducing kernel Banach spaces on Lie groups. J. Approx. Theory 164(1), 179–203 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christensen, J.G., Gröchenig, K., Ólafsson, G.: New atomic decompositions for Bergman spaces on the unit ball. Indiana Univ. Math. J. 66(1), 205–235 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christensen, J.G., Mayeli, A., Ólafsson, G.: Coorbit description and atomic decomposition of Besov spaces. Numer. Funct. Anal. Optim. 33(7–9), 847–871 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christensen, J.G., Ólafsson, G.: Coorbit spaces for dual pairs. Appl. Comput. Harmon. Anal. 31(2), 303–324 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christensen, J. G., Ólafsson, G.: Sampling in spaces of bandlimited functions on commutative spaces. In: Excursions in Harmonic Analysis. Volume 1, Appl. Numer. Harmon. Anal., pp. 35–69. Birkhäuser, New York (2013)

  9. Christensen, O.: Atomic decomposition via projective group representations. Rocky Mountain J. Math. 26(4), 1289–1312 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowling, M.: The Kunze–Stein phenomenon. Ann. Math. (2) 107(2), 209–234 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahlke, S., De Mari, F., De Vito, E., Labate, D., Steidl, G., Teschke, G., Vigogna, S.: Coorbit spaces with voice in a Fréchet space. J. Fourier Anal. Appl. 23, 1–66 (2016)

    MATH  Google Scholar 

  12. Dahlke, S., Fornasier, M., Rauhut, H., Steidl, G., Teschke, G.: Generalized coorbit theory, Banach frames, and the relation to \(\alpha \)-modulation spaces. Proc. Lond. Math. Soc. (3) 96(2), 464–506 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dahlke, S., Steidl, G., Teschke, G.: Coorbit spaces and Banach frames on homogeneous spaces with applications to the sphere. Adv. Comput. Math. 21(1–2), 147–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahlke, S., Steidl, G., Teschke, G.: Weighted coorbit spaces and Banach frames on homogeneous spaces. J. Fourier Anal. Appl. 10(5), 507–539 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dahlke, S., Steidl, G., Teschke, G.: Frames and coorbit theory on homogeneous spaces with a special guidance on the sphere. J. Fourier Anal. Appl. 13(4), 387–404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Darweesh, A.H.: Wavelets, Coorbit Thoery, and Projective Representation. Ph.D. thesis, Louisiana State University, LSU (2015)

  17. Faraut, J., Korányi, A.: Function spaces and reproducing kernels on bounded symmetric domains. J. Funct. Anal. 88(1), 64–89 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feichtinger, H.G.: A new family of functional spaces on the Euclidean \(n\)-space. In: Proceedings Conference on Theory of Approximation of Functions, Teor. Priblizh. (1983)

  19. Feichtinger, H.G.: Modulation spaces of locally compact Abelian groups. In: Radha, R., Krishna, M., Thangavelu, S. (eds.) Proceedings of International Conference on Wavelets and Applications, pp. 1–56. NuHAG, New Delhi Allied Publishers (2003)

  20. Feichtinger, H.G.: Modulation spaces: looking back and ahead. Sampl. Theory Signal Image Process. 5(2), 109–140 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Feichtinger, H.G., Gröchenig, K.: A unified approach to atomic decompositions via integrable group representations. In: Function Spaces and Applications (Lund, 1986), volume 1302 of Lecture Notes in Mathematics, pp. 52–73. Springer, Berlin (1988)

  22. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions, II. Monatsh. Math. 108(2–3), 129–148 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fornasier, M., Rauhut, H.: Continuous frames, function spaces, and the discretization problem. J. Fourier Anal. Appl. 11(3), 245–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gröchenig, K.: Describing functions: atomic decompositions versus frames. Monatsh. Math. 112(1), 1–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gröchenig, K.: Aspects of Gabor analysis on locally compact abelian groups. In: Gabor Analysis and Algorithms, Appl. Numer. Harmon. Anal., pp. 211–231. Birkhäuser Boston, Boston (1998)

  27. Gröchenig, K.: Foundations of Time-frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston, MA (2001)

    MATH  Google Scholar 

  28. Harish-Chandra, : Representations of semisimple Lie groups. IV. Am. J. Math. 77, 743–777 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jakobsen, M.S., Lemvig, J.: Co-compact Gabor systems on locally compact abelian groups. J. Fourier Anal. Appl. 22(1), 36–70 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jakobsen, M.S., Lemvig, J.: Reproducing formulas for generalized translation invariant systems on locally compact abelian groups. Trans. Am. Math. Soc. 368(12), 8447–8480 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Knapp, A.W.: Representation Theory of Semisimple Groups, volume 36 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1986) (an overview based on examples)

  32. Mackey, G.W.: Unitary representations of group extensions. I. Acta Math. 99, 265–311 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  33. Matusiak, E.: Some aspects of Gabor analysis on elementary locally compact Abelian groups. Ph.D. thesis, University of Vienna, Austria (2007)

  34. Poulsen, N.S.: On \(Csp{infty }\)-vectors and intertwining bilinear forms for representations of Lie groups. J. Funct. Anal. 9, 87–120 (1972)

    Article  MATH  Google Scholar 

  35. Rauhut, H.: Time-Frequency and Wavelet Analysis of Functions with Symmetry Properties. Logos, Berlin (2005)

    MATH  Google Scholar 

  36. Rauhut, H.: Coorbit space theory for quasi-Banach spaces. Stud. Math. 180(3), 237–253 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc., New York (1991)

    Google Scholar 

  38. Varadarajan, V.S.: Geometry of Quantum Theory, 2nd edn. Springer, New York (1985)

    MATH  Google Scholar 

  39. Wallach, N .R.: The analytic continuation of the discrete series. I, II. Trans. Am. Math. Soc 251, 1–17, 19–37 (1979)

  40. Warner, G.: Harmonic Analysis on Semi-simple Lie Groups. I. Springer, New York (1972)

    Book  MATH  Google Scholar 

  41. Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics, vol. 226. Springer, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Gerlach Christensen.

Additional information

Communicated by K. Gröchenig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was partially supported by NSF Grant DMS 1321794 and Simons grant 586106. The first and last named authors would also like to thank AMS for it’s support during the MRC program Lie Group Representations, Discretization, and Gelfand Pairs June 5–June 11, 2016.

Decompositions of reproducing kernel spaces for twisted convolution

Decompositions of reproducing kernel spaces for twisted convolution

From now on we let \(\phi (x)=W^\rho _u(u)\) for some fixed \(u\in \mathcal {S}.\) Then \(B_u^\sigma = \{ f\in B \mid f=f\#\phi \}\). Given a compact neighbourhood U of the identity in G, a U-dense and well-spread sequence \(\{ x_i\}\subseteq G\) and a U-BUPU \(\{\psi _i \}\), we formally define the operators

$$\begin{aligned} T_1 f&= \sum _i f(x_i) \sigma (x,x^{-1}x_i)\psi _i\#\phi \\ T_2 f&= \sum _i \lambda _i(f) \ell _{x_i}^\sigma \phi \\ T_3 f&= \sum _i c_i f(x_i) \ell _{x_i}^\sigma \phi \end{aligned}$$

where \(\lambda _i(f) = \int f(y)\psi _i(y)\overline{\sigma (y,y^{-1}x_i)}\,dy\) and \(c_i = \int \psi _i(y)\,dy\). The following results will establish when these operators are well defined on \(B_u^\sigma \).

Define the local oscillations

$$\begin{aligned} \mathrm {osc}_{U}^{r^\sigma } f(x) = \sup _{y\in U} | r^\sigma _y f(x)-f(x)| \quad \text {and} \quad \mathrm {osc}_{U}^{\ell ^\sigma } f(x) = \sup _{y\in U} | \ell ^\sigma _y f(x)-f(x)|. \end{aligned}$$

Proposition 2

If \(f\in B_u^\sigma \) then

$$\begin{aligned} |T_1f(x)-f(x)|&\le |f|*\mathrm {osc}^{r^\sigma }_{U^{-1}} \phi (x) \\ |T_2f(x)-f(x)|&\le |f|*\mathrm {osc}^{\ell ^\sigma }_{U^{-1}} \phi (x) \\ |T_3f(x)-f(x)|&\le |f|*\mathrm {osc}^{r^\sigma }_{U^{-1}} \phi *(|\phi | +\mathrm {osc}^{\ell ^\sigma }_{U^{-1}} \phi )(x) + |f|*\mathrm {osc}_{U^{-1}}^{\ell ^\sigma }\phi (x). \end{aligned}$$

Proof

We see that

$$\begin{aligned} \big |\sum _i f(x_i) \sigma (x,x^{-1}x_i)\psi _i(x) -f(x)\big | \le \sum _i \big |f(x_i)\sigma (x,x^{-1}x_i)-f(x)\big |\psi _i(x) \end{aligned}$$

and for \(x\in x_iU\) we get that \(x_i \in xU^{-1}\), so

$$\begin{aligned} \big |f(x_i)\sigma (x,x^{-1}x_i)-f(x)\big | \le \sup _{y\in U^{-1}} \big | f(xy)\sigma (x,y) - f(x)\big | = \mathrm {osc}_{U^{-1}}^{r^\sigma } f(x). \end{aligned}$$

Next, if \(f=f\#\phi \) we get

$$\begin{aligned} \big |r^\sigma _y f(x) - f(x)\big | \le \int |f(z)||\phi (z^{-1}xy)\overline{\sigma (z,z^{-1}xy)}\sigma (x,y) - \phi (z^{-1}x)\overline{\sigma (z,z^{-1})}|\,dz. \end{aligned}$$

Since \(\sigma (z,z^{-1}xy) = \sigma (z,z^{-1}x)\sigma (x,y)\overline{\sigma (z^{-1}x,y)}\) we get that the integral above reduces to

$$\begin{aligned} \int |f(z)||r^\sigma _y \phi (z^{-1}x) - \phi (z^{-1}x)|\,dz. \end{aligned}$$

Taking supremum we get the desired result.

We have that

$$\begin{aligned} f(x)-T_2f(x)&=\int f(y) \ell ^\sigma _y\phi (x)\,dy - \int \sum _i f(y)\psi _i(y)\overline{\sigma (y,y^{-1}x_i)}\,dy \ell ^\sigma _{x_i} \phi (x) \\&= \int \sum _i f(y)\psi _i(y)\big [\ell ^\sigma _y\phi (x)- \overline{\sigma (y,y^{-1}x_i)} \ell ^\sigma _{x_i} \phi (x)\big ]\,dy \\&= \int \sum _i f(y)\psi _i(y)\ell ^\sigma _y \big [\phi (x)-\ell ^\sigma _{y^{-1}x_i} \phi (x)\big ]\,dy. \end{aligned}$$

When \(y\in x_iU\) for a compact neighbourhood U of the identity, then \( y^{-1}x_i \in U^{-1}\). Thus we get

$$\begin{aligned} |f(x)-T_2f(x)|&\le \int \sum _i |f(y)| \psi _i(y)|\ell ^\sigma _y \phi (x)-\ell ^\sigma _{y^{-1}x_i} \phi (x)|\,dy \\&\le \int \sum _i |f(y)| \psi _i(y)|\ell ^\sigma _y \mathrm {osc}_{U^{-1}}^{\ell ^\sigma } \phi |\,dy \\&\le \int |f(y)| \ell _y \mathrm {osc}_{U^{-1}}^{\ell ^\sigma } \phi \,dy. \end{aligned}$$

This shows the claim.

$$\begin{aligned} |T_3f(x) - f(x)| \le \int \sum _i \psi _i(y) |f(x_i)\ell ^\sigma _{x_i}\phi (x) - f(y)\ell ^\sigma _y\phi (x)|\,dy \end{aligned}$$

Let us rewrite part of the integrand when \(y\in x_iU\)

$$\begin{aligned}&|f(x_i)\ell ^\sigma _{x_i}\phi (x) - f(y)\ell ^\sigma _y\phi (x)| \\&\quad = |f(x_i)\sigma (y,y^{-1}x_i) \ell ^\sigma _y\ell ^\sigma _{y^{-1}x_i}\phi (x) - f(y)\ell ^\sigma _y\phi (x)| \\&\quad \le |[f(x_i)\sigma (y,y^{-1}x_i)-f(y)] \ell ^\sigma _y\ell ^\sigma _{y^{-1}x_i}\phi (x)| + |f(y)||\ell ^\sigma _y\ell ^\sigma _{y^{-1}x_i}\phi (x)\ - \ell ^\sigma _y\phi (x)| \\&\quad = |[r^\sigma _{y^{-1}x_i}f(y)-f(y)] \ell ^\sigma _y\ell ^\sigma _{y^{-1}x_i}\phi (x)| + |f(y)||\ell ^\sigma _y\ell ^\sigma _{y^{-1}x_i}\phi (x)\ - \ell ^\sigma _y\phi (x)| \\&\quad \le \mathrm {osc}^{r^\sigma }_{U^{-1}}f(y) [|\ell ^\sigma _y\ell ^\sigma _{y^{-1}x_i}\phi (x) - \ell ^\sigma _y \phi (x)|+|\ell ^\sigma _y\phi (x)|] + |f(y)||\ell ^\sigma _y \mathrm {osc}^{\ell ^\sigma }_{U^{-1}} \phi (x)| \\&\quad \le \mathrm {osc}^{r^\sigma }_{U^{-1}}f(y) [|\ell ^\sigma _y\mathrm {osc}^{\ell ^\sigma _{U^{-1}}} \phi (x)| +|\ell ^\sigma _y\phi (x)|] + |f(y)||\ell ^\sigma _y \mathrm {osc}^{\ell ^\sigma }_{U^{-1}} \phi (x)|. \end{aligned}$$

As before the oscillation of f can be transferred onto the kernel, and the final result is obtained. \(\square \)

From this we obtain

Corollary 1

Let B be a solid BF-space and assume that \(f\mapsto f*|\phi |\), \(f\mapsto f*\mathrm {osc}^{\ell ^\sigma }_{U^{-1}}\phi \) and \(f\mapsto f*\mathrm {osc}^{r^\sigma }_{U^{-1}}\phi \) are bounded on B, then \(T_1,T_2,T_3\) are well-defined bounded operators on \(B^\#_u\).

Moreover, if there are constants \(C_U\) for which

$$\begin{aligned} \Vert f*\mathrm {osc}^{\ell ^\sigma }_{U^{-1}}\phi \Vert \le C_U \Vert f\Vert \text { and } \Vert f*\mathrm {osc}^{r^\sigma }_{U^{-1}}\phi \Vert \le C_U \Vert f\Vert \end{aligned}$$

and \(\lim _{U\rightarrow \{ e\}} C_U =0\), then there is a U small enough as well as U-dense \(\{ x_i\}\) such that the operators are invertible on \(B^\#_u\).

We will now use the special form of \(\phi \) to find oscillation estimates via derivatives. We have defined \(\phi (x) = \langle u, \rho (x)u\rangle \), and from this and Remark 1 we get

$$\begin{aligned} \mathrm {osc}_U^{r^\sigma } \phi (x) = \sup _{y\in U} |\langle \rho ^*(x^{-1})u,\rho (y)u-u\rangle |, \end{aligned}$$

and

$$\begin{aligned} \mathrm {osc}_U^{\ell ^\sigma } \phi (x) = \sup _{y\in U} |\langle \rho ^*(y)u-u, \rho (x)u\rangle |. \end{aligned}$$

In light of this is seems possible to evaluate the oscillation by a certain level of smoothness of the vector u, and this is exactly the approach we will take. We let \(v\in \mathcal {S}\) and \(\lambda \in \mathcal {S}^*\) be arbitrary elements and define the functions \(H(y) = \langle \lambda , \rho (y)u\rangle \) and \(K(y) = \langle \rho ^*(y)u,v\rangle .\) We will now investigate the local oscillations of H and K in terms of derivatives, but first we need to introduce some notation.

If f is a function on G and X is in \(\mathfrak {g}\), then define

$$\begin{aligned} Xf(y) = \frac{d}{d t}\Big |_{t=0} f(y\exp (tX)). \end{aligned}$$

We now fix a basis \(X_1,\dots ,X_n\) for the Lie algebra \(\mathfrak {g}\), and for a multi-index \(\alpha \) we define

$$\begin{aligned} X^\alpha f = X_1^{\alpha _1}\cdots X_n^{\alpha _n} f. \end{aligned}$$

We will investigate oscillations of H and K on the specific neighbourhood

$$\begin{aligned} U_\epsilon = \{ \exp (t_1X_1)\cdots \exp (t_nX_n)\mid -\epsilon \le t_k\le \epsilon \}. \end{aligned}$$

Remember that we choose the cocycle \(\sigma \) and \(\epsilon >0\) such that \(\sigma \) is \(C^\infty \) on a neighbourhood containing \(U_\epsilon \times U_\epsilon \). According to Lemma 2.5 in [4] there is a constant \(C_\epsilon \) such that

$$\begin{aligned} \sup _{y\in U_\epsilon } |H(y)-H(e)|&\le C_\epsilon \sum _{{\mathop {|\delta |=|\alpha |}\limits ^{1\le |\alpha |\le n}}} \int _{[-\epsilon ,\epsilon ]^{|\delta |}} |X^\alpha H (\tau _\delta (t_1,\ldots ,t_n))| (dt_1)^{\delta _1} \dots (dt_n)^{\delta _n}, \end{aligned}$$

and

$$\begin{aligned} \sup _{y\in U_\epsilon } |K(y)-K(e)|&\le C_\epsilon \sum _{{\mathop {|\delta |=|\alpha |}\limits ^{1\le |\alpha |\le n}}} \int _{[-\epsilon ,\epsilon ]^{|\delta |}} |X^\alpha K (\tau _\delta (t_1,\ldots ,t_n))| (dt_1)^{\delta _1} \dots (dt_n)^{\delta _n}, \end{aligned}$$

where \(\tau _\delta (t_1,\ldots ,t_n) = \exp (\delta _1t_1X_1)\cdots \exp (\delta _nt_nX_n)\) for a multi-index \(\delta \). Due to the special form of H

$$\begin{aligned} XH(y) = \frac{d}{dt}\Big |_{t=0} \langle \lambda , \rho (y\exp (tX)) u\rangle = \frac{d}{dt}\Big |_{t=0} \langle \lambda ,\rho (y)\rho (\exp (tX))u\rangle \overline{\sigma (y,\exp (tX))}. \end{aligned}$$

Therefore \(X^\delta H(y)\) can be expressed as a sum

$$\begin{aligned} \sum _{|\gamma |\le |\delta |} \langle \lambda , \rho (y) \rho (X_n)^{\gamma _n}\cdots \rho (X_1)^{\gamma _1}u \rangle g_\gamma (y), \end{aligned}$$

where \(g_\gamma \) is an appropriate derivative of the cocycle \(\sigma \) of order \(|\gamma |\). Notice, that the \(g_\gamma \)’s do not depend on the vectors v and \(\lambda \) used to define H and K. If y is in the compact set \(U_\epsilon \) the functions \(g_\gamma \) are uniformly bounded, and therefore there is a constant \(D_\epsilon \) such that

$$\begin{aligned} \sup _{y\in U_\epsilon }&|H(y)-H(e)| \\&\le D_\epsilon \sum _{{\mathop {|\delta |=|\alpha |}\limits ^{1\le |\alpha |\le n}}} \int _{[-\epsilon ,\epsilon ]^{|\delta |}} |\langle \lambda ,\rho (\tau _\delta (\mathbf {t})) \rho (X_n)^{\delta _n}\cdots \rho (X_1)^{\delta _1} u)| (dt_1)^{\delta _1} \dots (dt_n)^{\delta _n}, \end{aligned}$$

when we write \(\mathbf {t}=(t_1,t_2,\ldots ,t_n)\). From this we get that

$$\begin{aligned}&\mathrm {osc}^{r^\sigma }_U \phi (x) \\&\quad \le D_\epsilon \sum _{{\mathop {|\delta |=|\alpha |}\limits ^{1\le |\alpha |\le n}}} \int _{[-\epsilon ,\epsilon ]^{|\delta |}} |\langle u,\rho (x\tau _\delta (\mathbf {t})) \rho (X_n)^{\delta _n}\cdots \rho (X_1)^{\delta _1} u)| (dt_1)^{\delta _1} \dots (dt_n)^{\delta _n}. \end{aligned}$$

Treating K the same way we get

$$\begin{aligned}&\mathrm {osc}^{\ell ^\sigma }_U \phi (x) \\&\quad \le D_\epsilon \sum _{{\mathop {|\delta |=|\alpha |}\limits ^{1\le |\alpha |\le n}}} \int _{[-\epsilon ,\epsilon ]^{|\delta |}} |\langle \rho ^*(X_n)^{\delta _n} \cdots \rho ^*(X_1)^{\delta _1} u ,\rho (\tau _\delta (\mathbf {t})^{-1}x)u )| (dt_1)^{\delta _1} \dots (dt_n)^{\delta _n}. \end{aligned}$$

Lemma 8

Assume that B is a solid BF-space on which left and right translations are continuous. If \(f\mapsto f*|\langle u,\rho (\cdot )\rho (X_n)^{\delta _n}\cdots \rho (X_1)^{\delta _1} u\rangle |\) and \(f\mapsto f*|\langle \rho ^*(X_n)^{\delta _n}\cdots \rho ^*(X_1)^{\delta _1} u,\rho (\cdot )u\rangle |\) are bounded on B for all \(|\delta |\le \dim (G)\), then

$$\begin{aligned} \Vert f*\mathrm {osc}_U^{\ell ^\sigma } \phi \Vert _B \le C_\epsilon \Vert f\Vert _B \end{aligned}$$

and

$$\begin{aligned} \Vert f*\mathrm {osc}_U^{r^\sigma } \phi \Vert _B \le C_\epsilon \Vert f\Vert _B. \end{aligned}$$

Moreover, \(\lim _{\epsilon \rightarrow 0} C_\epsilon =0\).

Proof

Write \(\mathbf {t}=(t_1,\ldots ,t_n)\). Notice that

$$\begin{aligned} |f*&\mathrm {osc}_U^{\ell ^\sigma } \phi (x) | \\&\le D_\epsilon \sum _{{\mathop {|\delta |=|\alpha |}\limits ^{1\le |\alpha |\le n}} } \int _{[-\epsilon ,\epsilon ]^{|\delta |}} |\ell _{\tau _\delta (\mathbf {t})} f|*|W_{\rho ^*(X_n)^{\delta _n} \cdots \rho ^*(X_1)^{\delta _1} u}(u)(x) )| (dt_1)^{\delta _1} \dots (dt_n)^{\delta _n}. \end{aligned}$$

Since left translation is continuous on B the right hand side defines a function in B by Theorem 3.29 in [37], and by solidity \(f*\mathrm {osc}_U^{\ell ^\sigma } \phi (x)\) is also in B. Moreover, \(\Vert f*\mathrm {osc}_U^{\ell ^\sigma } \phi \Vert \le C_\epsilon \Vert f\Vert \), where \(C_\epsilon \) is equal to \(D_\epsilon \) multiplied by a polynomial in \(\epsilon \) with no constant term. Since \(D_\epsilon \) is uniform in \(\epsilon \) we see that \(\lim _{\epsilon \rightarrow 0} C_\epsilon =0\).

The proof for convolution with right oscillations follows in a similar manner. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, J.G., Darweesh, A.H. & Ólafsson, G. Coorbits for projective representations with an application to Bergman spaces. Monatsh Math 189, 385–420 (2019). https://doi.org/10.1007/s00605-019-01296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-019-01296-4

Keywords

Mathematics Subject Classification

Navigation