Skip to main content
Log in

Regularized limit of determinants for discrete tori

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider a combinatorial Laplace operator on a sequence of discrete graphs which approximates the m-dimensional torus when the discretization parameter tends to infinity. We establish a polyhomogeneous expansion of the resolvent trace for the family of discrete graphs, jointly in the resolvent and the discretization parameter. Based on a result about interchanging regularized limits and regularized integrals, we compare the regularized limit of the log-determinants of the combinatorial Laplacian on the sequence of discrete graphs with the logarithm of the zeta determinant for the Laplace Beltrami operator on the m-dimensional torus. In a similar manner we may apply our method to compare the product of the first \(N\in \mathbb {N}\) non-zero eigenvalues of the Laplacian on a torus (or any other smooth manifold with an explicitly known spectrum) with the zeta-regularized determinant of the Laplacian in the regularized limit as \(N\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In contrast to [14, Lemma 3.3] we do not assume that f(z, 1) and f(1, n) are smooth at \(z,n=0\), and require partial asymptotics as \(z,n\rightarrow \infty \) instead. In fact the latter result is applied to some homogeneous f(zn), where smoothness of f(z, 1) and f(1, n) at \(z,n=0\) indeed fails.

  2. Obtained by iterating the standard Euler Maclaurin formula in one single summation parameter.

  3. Note that \(\left( \mathrm {\omega }(1,y) + (z/n)^2\right) ^{-m}\) lifts to a polyhomogeneous function on the blowup space \([[0,1]^m\times \mathbb {R}^+, \mathscr {A}]\), blown up at the corners \(\mathscr {A}=\{(y,t) \mid y_j \in \{0,1\}, t \in \{0,\infty \}\}\). Pushforward theorem of Melrose [15, 16] then yields an asymptotic expansion of the integral as \(t\rightarrow 0\) or \(t\rightarrow \infty \). The explicit structure of the expansion is irrelevant in our discussion.

  4. Note from (1.3) that \(\ker \Delta _n\) and \(\ker \Delta \) are both one-dimensional.

References

  1. Burton, R., Pemantle, R.: Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21(3), 1329–1371 (1993). MR 1235419 (94m:60019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chaumard, L.: Discrtisation de zeta-dterminants d’oprateurs de Schrdinger sur le tore. Bull. Soc. Math. France 134(3), 327–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheeger, J.: Analytic torsion and the heat equation. Ann. of Math. (2) 109(2), 259–322 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chinta, G., Jorgenson, J., Karlsson, A.: Zeta functions, heat kernels, and spectral asymptotics on degenerating families of discrete tori. Nagoya Math. J. 198, 121–172 (2010). MR 2666579 (2011i:58052)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dodziuk, J.: Finite-difference approach to the Hodge theory of harmonic forms. Am. J. Math. 98(1), 79–104 (1976). MR 0407872 (53 #11642)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duplantier, B., David, F.: Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice. J. Stat. Phys. 51(3–4), 327–434 (1988). MR 952941 (89m:82005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedlander, L., Guillemin, V.: Determinants of zeroth order operators. J. Diff. Geom. 78(1), 1–12 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedlander, L.: The asymptotics of the determinant function for a class of operators. Proc. Am. Math. Soc. 107, 169–178 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hawking, S.W.: Zeta function regularization of path integrals in curved spacetime. Comm. Math. Phys. 55(2), 133–148 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kasteleyn, P.W.: The statistics of dimers on a lattice, i. the number of dimer arrangements on a quadratic lattice. Physica 27, 1209–12225 (1961)

    Article  MATH  Google Scholar 

  11. Kenyon, R.: The asymptotic determinant of the discrete Laplacian (MR 1819995 (2002g:82019)). Acta Math. 185(2), 239–286 (2000)

    Article  MathSciNet  Google Scholar 

  12. Kirchhoff, G.: über die auflösung der gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer sterne geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  13. Lesch, M.: Operators of Fuchs type, conical singularities, and asymptotic methods, Teubner-Texte zur Mathematik , vol. 136, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart (1997). arXiv:dg-ga/9607005v1, MR 1449639 (98d:58174)

  14. Lesch, M., Vertman, B.: Regularizing infinite sums of zeta-determinants. Math. Ann. 361(3–4), 835–862 (2015)

  15. Melrose, R.: Calculus of conormal distributions on manifolds with corners. Intl. Math. Res. Not. 3, 51–61 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Melrose, R.: The Atiyah–Patodi–Singer Index Theorem. Research Notes in Math., vol. 4. A K Peters, Natick (1993)

  17. Müller, W.: Analytic torsion and \(R\)-torsion of Riemannian manifolds. Adv. Math. 28(3), 233–305 (1978). MR 498252 (80j:58065b)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ray, D.B., Singer, I.M.: R-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reshetikhin, N., Vertman, B.: Combinatorial quantum field theory and gluing formula for determinants. Lett. Math. Phys. 105(3), 309–340 (2015)

  20. Sauer, B.: On the resolvent trace of multi-parametric Sturm–Liouville operators. Master thesis, Bonn (2013)

  21. Sridhar, A.: Asymptotic determinant of discrete Laplace–Beltrami operators. Preprint arXiv:1501.02057 (2015)

  22. Szegö, G.: Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion. Math. Ann. 76(4), 490–503 (1915)

    Article  MathSciNet  MATH  Google Scholar 

  23. Temperley, H.N.V.: Enumeration of graphs on a large periodic lattice, Combinatorics (Proceedings of British Combinatorial Conference , Univ. Coll. Wales, Aberystwyth, 1973), Cambridge University Press, London, pp. 155–159. London Math. Soc. Lecture Note Ser., No. 13. (1974) MR 0347616 (50 #119)

  24. Vertman, B.: Multiparameter resolvent trace expansion for elliptic boundary problems. arXiv:1301.7293

Download references

Acknowledgements

The author gratefully acknowledges helpful discussions with Matthias Lesch, Nicolai Reshetikhin and Daniel Grieser. He also gratefully acknowledges financial support by the Hausdorff Center for Mathematics in Bonn and by the Mathematical Institute at Münster University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Vertman.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vertman, B. Regularized limit of determinants for discrete tori. Monatsh Math 186, 539–557 (2018). https://doi.org/10.1007/s00605-017-1083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-017-1083-5

Keywords

Mathematics Subject Classification

Navigation