1 Introduction

Non-integer base expansions have received much attention since the pioneering works of Rényi [25] and Parry [24]. Given a positive integer M and a real number \(q \in (1,M+1]\), a sequence \((d_i)=d_1d_2\ldots \) with digits \(d_i\in \left\{ 0,1,\ldots ,M\right\} \) is called a q -expansion of x or an expansion of x in base q if

$$\begin{aligned} x=\pi _q((d_i)):=\sum _{i=1}^\infty \frac{d_i}{q^i}. \end{aligned}$$

It is well known that each \(x \in I_q:=[0,M/(q-1)]\) has a q-expansion. One such expansion—the greedy q -expansion—can be obtained by performing the so called greedy algorithm of Rényi which is defined recursively as follows: if \(d_1, \ldots ,d_{n-1}\) is already defined (no condition if \(n=1\)), then \(d_n\) is the largest element of \(\left\{ 0,\ldots ,M\right\} \) satisfying \(\sum _{i=1}^n d_i q^{-i} \le x\). Equivalently, \((d_i)\) is the greedy q-expansion of \(\sum _{i=1}^\infty d_i q^{-i}\) if and only if \(\sum _{i=n+1}^\infty d_i q^{-i+n}<1\) whenever \(d_n < M, n=1,2,\ldots \). Hence if \(1<q < r \le M+1\), then the greedy q-expansion of a number \(x \in I_q\) is also the greedy expansion in base r of a number in \(I_r\).

Let \({{\mathcal {U}}}_q\) be the univoque set consisting of numbers \(x\in I_q\) such that x has a unique q-expansion, and let \({{\mathcal {U}}}_q'\) be the set of corresponding expansions. Note that a sequence \((c_i)\) belongs to \({{\mathcal {U}}}_q'\) if and only if both the sequences \((c_i)\) and \((M-c_i):=(M-c_1)(M-c_2)\ldots \) are greedy q-expansions, hence \({{\mathcal {U}}}_q' \subseteq {{\mathcal {U}}}_r'\) whenever \(1< q < r \le M+1\). Many works are devoted to the univoque sets \({{\mathcal {U}}}_q\) (see, e.g., [10, 11, 14]). Recently, de Vries and Komornik investigated their topological properties in [8]. Komornik et al. considered their Hausdorff dimension in [19], and showed that the dimension function \(D: q\mapsto \dim _H{{\mathcal {U}}}_q\) behaves like a Devil’s staircase on \((1,M+1]\). For more information on the univoque set \({{\mathcal {U}}}_q\) we refer to the survey paper [15] and the references therein.

There is an intimate connection between the set \({{\mathcal {U}}}_q\) and the set of univoque bases \({{\mathcal {U}}}={{\mathcal {U}}}(M)\) consisting of numbers \(q>1\) such that 1 has a unique q-expansion over the alphabet \(\left\{ 0,1,\ldots ,M\right\} \). For instance, it was shown in [8] that \({{\mathcal {U}}}_q\) is closed if and only if q does not belong to the set \(\overline{{{\mathcal {U}}}}\). It is well-known that \({{\mathcal {U}}}\) is a Lebesgue null set of full Hausdorff dimension (cf. [6, 12, 19]). Moreover, the smallest element of \({{\mathcal {U}}}\) is the Komornik–Loreti constant (cf. [16, 17])

$$\begin{aligned} q'=q'(M), \end{aligned}$$

while the largest element of \({{\mathcal {U}}}\) is (of course) \(M+1\). Recently, Komornik and Loreti showed in [18] that its closure \(\overline{{{\mathcal {U}}}}\) is a Cantor set (see also, [9]), i.e., a nonempty closed set having neither isolated nor interior points. Writing the open set \((1,M+1] {\setminus } \overline{{{\mathcal {U}}}}=(1,M+1){\setminus } \overline{{{\mathcal {U}}}}\) as the disjoint union of its connected components, i.e.,

$$\begin{aligned} (1,M+1]{\setminus }\overline{{{\mathcal {U}}}}= (1,q')\cup \bigcup \left( q_0,q_0^*\right) , \end{aligned}$$
(1)

the left endpoints \(q_0\) in (1) run over the whole set \(\overline{{{\mathcal {U}}}}{\setminus }{{\mathcal {U}}}\), and the right endpoints \(q_0^*\) run through a subset of \({{\mathcal {U}}}\) (cf. [8]). Furthermore, each left endpoint \(q_0\) is algebraic, while each right endpoint \(q_0^*\in {{\mathcal {U}}}\) is transcendental (cf. [20]).

De Vries showed in [7], roughly speaking, that the sets \({{\mathcal {U}}}_q'\) change the most if we cross a univoque base. More precisely, it was shown that \(q \in {{\mathcal {U}}}\) if and only if \({{\mathcal {U}}}_r' {\setminus } {{\mathcal {U}}}_q'\) is uncountable for each \(r \in (q,M+1]\) and \(r \in \overline{{{\mathcal {U}}}}\) if and only if \({{\mathcal {U}}}_r' {\setminus } {{\mathcal {U}}}_q'\) is uncountable for each \(q \in (1,r)\).

The main object of this paper is to provide similar characterizations of \({{\mathcal {U}}}\) and \(\overline{{{\mathcal {U}}}}\) in terms of the Hausdorff dimension of the sets \({{\mathcal {U}}}_r' {\setminus } {{\mathcal {U}}}_q'\) after a natural projection. Furthermore, we characterize the sets \({{\mathcal {U}}}\) and \(\overline{{{\mathcal {U}}}}\) by looking at the Hausdorff dimensions of \({{\mathcal {U}}}\) and \(\overline{{{\mathcal {U}}}}\) locally.

Theorem 1.1

Let \(q\in (1, M+1]\). The following statements are equivalent.

  1. (i)

    \(q\in {{\mathcal {U}}}\).

  2. (ii)

    \(\dim _H\pi _{M+1}({{\mathcal {U}}}_r'{\setminus }{{\mathcal {U}}}_q')>0\) for any \(r\in (q, M+1]\).

  3. (iii)

    \(\dim _H{{\mathcal {U}}}\cap (q,r)>0\) for any \(r\in (q, M+1]\).

Theorem 1.2

Let \(q\in (1, M+1]\). The following statements are equivalent.

  1. (i)

    \(q\in \overline{{{\mathcal {U}}}}{\setminus }(\bigcup \left\{ q_0^*\right\} \cup \left\{ q'\right\} )\).

  2. (ii)

    \(\dim _H\pi _{M+1}({{\mathcal {U}}}_q'{\setminus }{{\mathcal {U}}}_p')>0\) for any \(p\in (1, q)\).

  3. (iii)

    \(\dim _H{{\mathcal {U}}}\cap (p, q)>0\) for any \(p\in (1, q)\).

It follows at once from Theorems 1.1 and 1.2 that \({{\mathcal {U}}}\) (or, equivalently, \(\overline{{{\mathcal {U}}}}\)) does not contain isolated points.

We remark that the projection map \(\pi _{M+1}\) in Theorem 1.1 (ii) can be replaced by \(\pi _\rho \) for any \(r\le \rho \le M+1\). Similarly, the projection map \(\pi _{M+1}\) in Theorem 1.2 (ii) can also be replaced by \(\pi _\rho \) with \(q\le \rho \le M+1\). We also point out that Theorems 1.1 and  1.2 strengthen the main result of [7] where the cardinality of the sets \({{\mathcal {U}}}_q' {\setminus } {{\mathcal {U}}}_p'\) with \(1< p < q \le M+1\) was determined.

Let \(\mathcal {B}_2\) be the set of bases \(q \in \left( 1,M+1\right] \) for which there exists a number \(x\in [0, M/(q-1)]\) having exactly two q-expansions. It was asked by Sidorov [26] whether \(\dim _H\mathcal {B}_2\cap (q', q'+\delta )>0 \) for any \(\delta >0\), where \(q'\) is the Komornik–Loreti constant. Since \({{\mathcal {U}}}\subseteq \mathcal {B}_2\) (see [26, Lemma 3.1]Footnote 1), Theorem 1.1 answers this question in the affirmative.

Corollary 1

\(\dim _H\mathcal {B}_2\cap (q', q'+\delta )>0\) for any \(\delta >0.\)

The rest of the paper is arranged as follows. In Sect. 2 we recall some properties of unique q-expansions. The proof of Theorems 1.1 and 1.2 will be given in Sect. 3.

2 Preliminaries

In this section we recall some properties of the univoque set \({{\mathcal {U}}}_q\). Throughout this paper, a sequence \((d_i)=d_1d_2\ldots \) is an element of \(\left\{ 0,\ldots ,M\right\} ^\infty \) with each digit \(d_i\) belonging to the alphabet \(\left\{ 0,\ldots ,M\right\} \). Moreover, for a word \({\mathbf {c}}=c_1\ldots c_n\) we mean a finite string of digits with each digit \(c_i\) from \(\left\{ 0,\ldots ,M\right\} \). For two words \({\mathbf {c}}=c_1\ldots c_n\) and \(\mathbf {d}=d_1\ldots d_m\) we denote by \({\mathbf {c}}\mathbf {d}=c_1\ldots c_nd_1\ldots d_m\) the concatenation of the two words. For an integer \(k\ge 1\) we denote by \({\mathbf {c}}^k\) the k-times concatenation of \({\mathbf {c}}\) with itself, and by \({\mathbf {c}}^\infty \) the infinite repetition of \({\mathbf {c}}\).

For a sequence \((d_i)\) we denote its reflection by \(\overline{(d_i)}:=(M-d_1)(M-d_2)\ldots \). Accordingly, for a word \({\mathbf {c}}=c_1\ldots c_n\) we denote its reflection by \(\overline{{\mathbf {c}}}:=(M-c_1)\ldots (M-c_n)\). If \(c_n<M\) we denote by \( {\mathbf {c}}^+:=c_1\ldots c_{n-1}(c_n+1). \) If \(c_n>0\) we write \({\mathbf {c}}^-:=c_1\ldots c_{n-1}(c_n-1)\).

We will use systematically the lexicographic ordering \(<, \le ,>\) and \(\ge \) between sequences and between words. For two sequences \((c_i), (d_i)\in \left\{ 0,1,\ldots , M\right\} ^\infty \) we say that \((c_i)<(d_i)\) if there exists an integer \(n\ge 1\) such that \(c_1\ldots c_{n-1}=d_1\ldots d_{n-1}\) and \(c_n<d_n\). Furthermore, we write \((c_i)\le (d_i)\) if \((c_i)<(d_i)\) or \((c_i)=(d_i)\). Similarly, we say \((c_i)>(d_i)\) if \((d_i)<(c_i)\), and \((c_i)\ge (d_i)\) if \((d_i)\le (c_i)\). We extend this definition to words in the obvious way. For example, for two words \({\mathbf {c}}\) and \(\mathbf {d}\) we write \({\mathbf {c}}<\mathbf {d}\) if \({\mathbf {c}}0^\infty <\mathbf {d}0^\infty \).

A sequence is called finite if it has a last nonzero element. Otherwise it is called infinite. So \(0^{\infty }:=00\ldots \) is considered to be infinite. For \(q\in (1,M+1]\) we denote by

$$\begin{aligned} \alpha (q)=(\alpha _i(q)) \end{aligned}$$

the quasi-greedy q-expansion of 1 (cf. [5]), i.e., the lexicographically largest infinite q-expansion of 1. Let \(\beta (q)=(\beta _i(q))\) be the greedy q-expansion of 1 (cf. [24]), i.e., the lexicographically largest q-expansion of 1. For convenience, we set \(\alpha (1)=0^{\infty }\) and \(\beta (1)=10^{\infty }\), even though \(\alpha (1)\) is not a 1-expansion of 1.

Moreover, we endow the set \(\left\{ 0,\ldots ,M\right\} \) with the discrete topology and the set of all possible sequences \(\left\{ 0,1,\ldots ,M\right\} ^{\infty }\) with the Tychonoff product topology.

The following properties of \(\alpha (q)\) and \(\beta (q)\) were established in [24], see also [3].

Lemma 2.1

  1. (i)

    The map \(q\mapsto \alpha (q)\) is an increasing bijection from \([1, M+1]\) onto the set of all infinite sequences \((\alpha _i)\) satisfying

    $$\begin{aligned} \alpha _{n+1}\alpha _{n+2}\ldots \le \alpha _1\alpha _2\ldots \quad \text {whenever}\quad \alpha _n<M. \end{aligned}$$
  2. (ii)

    The map \(q\mapsto \beta (q)\) is an increasing bijection from \([1, M+1]\) onto the set of all sequences \((\beta _i)\) satisfying

    $$\begin{aligned} \beta _{n+1}\beta _{n+2}\ldots<\beta _1\beta _2\ldots \quad \text {whenever}\quad \beta _n<M. \end{aligned}$$

Lemma 2.2

  1. (i)

    \(\beta (q)\) is infinite if and only if \(\beta (q)=\alpha (q)\).

  2. (ii)

    If \(\beta (q)=\beta _1\ldots \beta _m 0^\infty \) with \(\beta _m>0\), then \(\alpha (q)=(\beta _1\ldots \beta _m^-)^\infty .\)

  3. (iii)

    The map \(q\mapsto \alpha (q)\) is left-continuous, while the map \(q\mapsto \beta (q)\) is right-continuous.

In order to investigate the unique expansions we need the following lexicographic characterization of \({{\mathcal {U}}}_q'\) (cf. [3]).

Lemma 2.3

Let \(q\in (1,M+1]\). Then \((d_i)\in {{\mathcal {U}}}_q'\) if and only if

$$\begin{aligned} \left\{ \begin{array}{lll} d_{n+1}d_{n+2}\ldots<\alpha _1(q)\alpha _2(q)\ldots &{}\text { whenever }&{}d_n<M,\\ d_{n+1}d_{n+2}\ldots>\overline{\alpha _1(q)\alpha _2(q)\ldots }&{}\text { whenever} &{}d_n>0. \end{array} \right. \end{aligned}$$

Note that \(q\in {{\mathcal {U}}}\) if and only if \(\alpha (q)\) is the unique q-expansion of 1. Then Lemma 2.3 yields a characterization of \({{\mathcal {U}}}\) (see also, [11, 17]).

Lemma 2.4

Let \(q \in (1,M+1)\). Then \(q\in {{\mathcal {U}}}\) if and only if \(\alpha (q)=(\alpha _i(q))\) satisfies

$$\begin{aligned} \overline{\alpha (q)}<\alpha _{n+1}(q)\alpha _{n+2}(q)\ldots <\alpha (q)\quad \text {for all}\quad n\ge 1. \end{aligned}$$

Consider a connected component \((q_0, q_0^*)\) of \((q', M+1){\setminus }\overline{{{\mathcal {U}}}}\) as in (1). Then there exists a (unique) word \({{\mathbf {t}}}=t_1\ldots t_p\) such that (cf. [8, 20])

$$\begin{aligned} \alpha (q_0)={{\mathbf {t}}}^\infty \quad \text {and}\quad \alpha \left( q_0^*\right) =\lim _{n\rightarrow \infty }g^n({{\mathbf {t}}}), \end{aligned}$$

where \(g^n=\underbrace{g\circ \cdots \circ g}_n\) denotes the n-fold composition of g with itself, and

$$\begin{aligned} g({\mathbf {c}}) :={\mathbf {c}}^+\overline{{\mathbf {c}}^+}\quad \text {for any word}\quad {\mathbf {c}}=c_1\ldots c_k\text { with }c_k<M. \end{aligned}$$
(2)

We point out that the word \({{\mathbf {t}}}=t_1\ldots t_p\) in the definitions of \(\alpha (q_0)\) and \(\alpha (q_0^*)\) is called an admissible block in [20, Definition 2.1] which satisfies the following lexicographical inequalities: \(t_p<M\) and for any \(1\le i\le p\) we have

$$\begin{aligned} \overline{t_1\ldots t_p}\le t_i\ldots t_pt_1\ldots t_{i-1}\quad \text {and}\quad t_i\ldots t_p\;\overline{t_1\ldots t_{i-1}}\le t_1\ldots t_p^+. \end{aligned}$$

We also mention that the limit \(\lim _{n\rightarrow \infty }g^n({{\mathbf {t}}})\) stands for the infinite sequence beginning with \( {{\mathbf {t}}}^+\overline{{{\mathbf {t}}}}\,\overline{{{\mathbf {t}}}^+}{{\mathbf {t}}}^+\;\overline{{{\mathbf {t}}}^+}{{\mathbf {t}}}\,{{\mathbf {t}}}^+\overline{{{\mathbf {t}}}}\ldots , \) and the existence of this limit was shown by Allouche [2].

In this case \((q_0, q_0^*)\) is called the connected component generated by \({{\mathbf {t}}}\). The closed interval \([q_0, q_0^*]\) is the so called admissible interval generated by \({{\mathbf {t}}}\) (see [20, Definition 2.4]). Furthermore, the sequence

$$\begin{aligned} \alpha \left( q_0^*\right) =\lim _{n\rightarrow \infty }g^n({{\mathbf {t}}})={{\mathbf {t}}}^+\,\overline{{{\mathbf {t}}}}\;\overline{{{\mathbf {t}}}^+}\,{{\mathbf {t}}}^+~ \overline{{{\mathbf {t}}}^+}\, {{\mathbf {t}}}\, {{\mathbf {t}}}^+\,\overline{{{\mathbf {t}}}}\ldots \end{aligned}$$

is a generalized Thue–Morse sequence (cf. [20, Definition 2.2], see also [1]).

The following lemma for the generalized Thue–Morse sequence \(\alpha (q_0^*)\) was established in [20, Lemma 4.2].

Lemma 2.5

Let \((q_0, q_0^*)\subset (q', M+1){\setminus }\overline{{{\mathcal {U}}}}\) be a connected component generated by \(t_1\ldots t_p\). Then the sequence \((\theta _i)=\alpha (q_0^*)\) satisfies

$$\begin{aligned} \overline{\theta _1\ldots \theta _{2^n p-i}}<\theta _{i+1}\ldots \theta _{2^n p}\le \theta _1\ldots \theta _{2^n p-i} \end{aligned}$$

for any \(n\ge 0\) and any \(0\le i<2^n p\).

Finally, we recall some topological properties of \({{\mathcal {U}}}\) and \(\overline{{{\mathcal {U}}}}\) which were essentially established in [8, 18] (see also, [9]).

Lemma 2.6

  1. (i)

    If \(q\in {{\mathcal {U}}}\), then there exists a decreasing sequence \((r_n)\) of elements in \(\bigcup \left\{ q_0^*\right\} \) that converges to q as \(n\rightarrow \infty \);

  2. (ii)

    If \(q\in \overline{{{\mathcal {U}}}}{\setminus }(\bigcup \left\{ q_0^*\right\} \cup \left\{ q'\right\} )\), then there exists an increasing sequence \((p_n)\) of elements in \(\bigcup \left\{ q_0^*\right\} \) that converges to q as \(n\rightarrow \infty \).

We remark here that the bases \(q_0^*\) are called de Vries–Komornik numbers which were shown to be transcendental in [20]. By Lemma 2.6 it follows that the set of de Vries–Komornik numbers is dense in \(\overline{{{\mathcal {U}}}}\).

3 Proofs of Theorems 1.1 and 1.2

3.1 Proof of Theorem 1.1 for (i) \(\Leftrightarrow \) (ii).

For each connected component \((q_0, q_0^*)\) of \((q', M+1){\setminus }\overline{{{\mathcal {U}}}}\) we construct a sequence of bases \((r_n)\) in \({{\mathcal {U}}}\) strictly decreasing to \(q_0^*\).

Lemma 3.1

Let \((q_0, q_0^*)\subset (q', M+1){\setminus }\overline{{{\mathcal {U}}}}\) be a connected component generated by \(t_1\ldots t_p\), and let \((\theta _i)=\alpha (q_0^*)\). Then for each \(n\ge 1\), the number \(r_n\in {{\mathcal {U}}}\) determined by

$$\begin{aligned} \alpha (r_n)=\beta (r_n)=\theta _1\ldots \theta _{2^n p}\left( \theta _{2^n p+1}\ldots \theta _{2^{n+1}p}\right) ^\infty , \end{aligned}$$

belongs to \({{\mathcal {U}}}\). Furthermore, \((r_n)\) is a strictly decreasing sequence that converges to \(q_0^*\).

Proof

Using (2) one may verify that the sequence \((\theta _i)\) satisfies

$$\begin{aligned} \theta _{2^n p+k} =\overline{\theta _k }\quad \text {for all}\quad 1\le k<2^n p;\quad \theta _{2^{n+1}p} =\overline{\theta _{2^n p} }\,^+ \end{aligned}$$

for all \(n\ge 0\). Now fix \(n\ge 1\). We claim that

$$\begin{aligned} \sigma ^i\left( \theta _1\ldots \theta _{2^n p}(\theta _{2^n p+1}\ldots \theta _{2^{n+1}p})^\infty \right) <\theta _1\ldots \theta _{2^n p}(\theta _{2^n p+1}\ldots \theta _{2^{n+1}p})^\infty \end{aligned}$$
(3)

for all \(i\ge 1\), where \(\sigma \) is the left shift on \(\left\{ 0,\ldots , M\right\} ^\infty \) defined by \(\sigma ((c_i))=(c_{i+1})\). By periodicity it suffices to prove (3) for \(0<i<2^{n+1}p\). We distinguish between the following three cases: (I) \(0< i<2^np\); (II) \(i=2^n p\); (III) \(2^n p<i<2^{n+1}p\).

Case (I). \(0< i<2^n p\). Then by Lemma 2.5 it follows that

$$\begin{aligned} \theta _{i+1}\ldots \theta _{2^n p}\le \theta _1\ldots \theta _{2^n p-i} \end{aligned}$$

and

$$\begin{aligned} \theta _{2^n p+1}\ldots \theta _{2^np +i}=\overline{\theta _1\ldots \theta _i}<\theta _{2^n p-i+1}\ldots \theta _{2^n p}. \end{aligned}$$

This implies (3) for \(0<i<2^n p\).

Case (II). \(i=2^n p\). Note by [17] that \(\alpha _1(q')=[M/2]+1\) (see also, [4]), where [y] denotes the integer part of a real number y. Then by using \(q_0^*>q'\) in Lemma 2.1 we have

$$\begin{aligned} \theta _1=\alpha _1\left( q_0^*\right) \ge \alpha _1(q')>\overline{\alpha _1(q')}\ge \overline{\theta _1}. \end{aligned}$$

This, together with \(n\ge 1\), implies

$$\begin{aligned} \theta _{2^n p+1}\ldots \theta _{2^{n+1} p}=\overline{\theta _1\ldots \theta _{2^np}}\,^+<\theta _1\ldots \theta _{2^n p}. \end{aligned}$$

So, (3) holds true for \(i=2^n p\).

Case (III). \(2^n p< i<2^{n+1}p\). Write \(j=i-2^n p\). Then \(0< j<2^n p\). Once again, we infer from Lemma 2.5 that

$$\begin{aligned} \theta _{i+1}\ldots \theta _{2^{n+1}p}=\overline{\theta _{j+1}\ldots \theta _{2^n p}}\,^+\le \theta _1\ldots \theta _{2^n p-j} \end{aligned}$$

and

$$\begin{aligned} \theta _{2^n p+1}\ldots \theta _{2^n p+j}=\overline{\theta _1\ldots \theta _j}<\theta _{2^np-j+1}\ldots \theta _{2^n p}. \end{aligned}$$

This yields (3) for \(2^n p<i<2^{n+1}p\).

Note by Lemma 2.5 that

$$\begin{aligned} \sigma ^i\left( \theta _1\ldots \theta _{2^n p}(\theta _{2^n p+1}\ldots \theta _{2^{n+1}p})^\infty \right) >\overline{\theta _1\ldots \theta _{2^n p}(\theta _{2^n p+1}\ldots \theta _{2^{n+1}p})^\infty } \end{aligned}$$

for any \(i\ge 0\). Then by (3) and Lemma 2.4 it follows that there exists \(r_n\in {{\mathcal {U}}}\) such that

$$\begin{aligned} \alpha (r_n)=\beta (r_n)=\theta _1\ldots \theta _{2^n p}(\theta _{2^n p+1}\ldots \theta _{2^{n+1}p})^\infty . \end{aligned}$$

In the following we prove \(r_n\searrow q_0^*\) as \(n\rightarrow \infty \). For \(n\ge 1\) we observe that

$$\begin{aligned} \beta (r_{n+1})&=\theta _1\ldots \theta _{2^{n+1}p}(\theta _{2^{n+1}p+1}\ldots \theta _{2^{n+2}p})^\infty \\&=\theta _1\ldots \theta _{2^{n}p}\overline{\theta _1\ldots \theta _{2^n p}}\,^+\overline{\theta _1\ldots \theta _{2^n p}}\ldots \\&<\theta _1\ldots \theta _{2^n p}\,\left( \overline{\theta _1\ldots \theta _{2^n p}}^+\right) ^\infty =\beta (r_n). \end{aligned}$$

Then by Lemma 2.1 (ii) we have \(r_{n+1}<r_{n}\). Note that \(\beta (q_0^*)=\alpha (q_0^*)=(\theta _i)\), and

$$\begin{aligned} \beta (r_n)\rightarrow (\theta _i)=\beta \left( q_0^*\right) \quad \text {as}\quad n\rightarrow \infty . \end{aligned}$$

Hence, we conclude from Lemma 2.2 (iii) that \(r_n\searrow q_0^*\) as \(n\rightarrow \infty \). \(\square \)

Lemma 3.2

Let \((q_0, q_0^*)\subset (q',M+1){\setminus }\overline{{{\mathcal {U}}}}\) be a connected component generated by \(t_1\ldots t_p\), and let \((\theta _i)=\alpha (q_0^*)\). Then for any \(n\ge 1\) and any \(0\le i< 2^{n}p\) we have

$$\begin{aligned}&\overline{\theta _1\ldots \theta _{2^{n+1}p-i}}<\sigma ^i(\xi _n\overline{\xi _n})<\theta _1\ldots \theta _{2^{n+1}p-i},\nonumber \\&\overline{\theta _1\ldots \theta _{2^{n+1}p-i}}< \sigma ^i(\xi _n\overline{\xi _n^-}) \le \theta _1\ldots \theta _{2^{n+1}p-i},\\&\overline{\theta _1\ldots \theta _{2^{n+1}p-i}}< \sigma ^i(\xi _n^-\xi _n) <\theta _1\ldots \theta _{2^{n+1}p-i},\nonumber \end{aligned}$$
(4)

and thus (by symmetry),

$$\begin{aligned}&\overline{\theta _1\ldots \theta _{2^{n+1}p-i}}<\sigma ^i(\overline{\xi _n}\xi _n)<\theta _1\ldots \theta _{2^{n+1}p-i},\\&\overline{\theta _1\ldots \theta _{2^{n+1}p-i}}\le \sigma ^i(\overline{\xi _n} {\xi _n^-})<\theta _1\ldots \theta _{2^{n+1}p-i},\\&\overline{\theta _1\ldots \theta _{2^{n+1}p-i}}< \sigma ^i(\overline{\xi _n^-}\,\overline{\xi _n}) <\theta _1\ldots \theta _{2^{n+1}p-i}, \end{aligned}$$

where \(\xi _n:=\theta _1\ldots \theta _{2^n p}\).

Proof

By symmetry it suffices to prove (4).

Note that \( \xi _n\overline{\xi _n}=\theta _1\ldots \theta _{2^{n+1}p}^-\) and \(\xi _n\overline{\xi _n^-}=\theta _1\ldots \theta _{2^{n+1}p}.\) Then by Lemma 2.5 it follows that

$$\begin{aligned} \overline{\theta _1\ldots \theta _{2^{n+1}p-i}}<\sigma ^i(\xi _n\overline{\xi _n})<\theta _1\ldots \theta _{2^{n+1}p-i} \end{aligned}$$

and

$$\begin{aligned} \overline{\theta _1\ldots \theta _{2^{n+1}p-i}}<\sigma ^i(\xi _n\overline{\xi _n^-})\le \theta _1\ldots \theta _{2^{n+1}p-i} \end{aligned}$$

for any \(0\le i<2^{n}p\).

So, it suffices to prove the inequalities

$$\begin{aligned} \overline{\theta _1\ldots \theta _{2^{n+1}p-i}}<\sigma ^i(\theta _1\ldots \theta _{2^n p}^-\theta _1\ldots \theta _{2^n p})<\theta _1\ldots \theta _{2^{n+1}p-i} \end{aligned}$$
(5)

for any \(0\le i<2^{n}p\). By Lemma 2.5 it follows that for any \(0\le i<2^n p\) we have

$$\begin{aligned} \overline{\theta _1\ldots \theta _{2^n p-i}}\le \theta _{i+1}\ldots \theta _{2^n p}^-<\theta _1\ldots \theta _{2^n p-i} \end{aligned}$$

and

$$\begin{aligned} \theta _1\ldots \theta _i>\overline{\theta _{2^n p-i+1}\ldots \theta _{2^n p}}. \end{aligned}$$

This proves (5). \(\square \)

Lemma 3.3

Let \((q_0, q_0^*)\subset (q',M+1){\setminus }\overline{{{\mathcal {U}}}}\) be a connected component generated by \(t_1\ldots t_p\). Then \( \dim _H\pi _{M+1}({{\mathcal {U}}}_r'{\setminus }{{\mathcal {U}}}_{q_0^*}')>0 \) for any \(r\in (q_0^*, M+1]\).

Proof

Take \(r\in (q_0^*, M+1]\). By Lemma 3.1 there exists \(n\ge 1\) such that

$$\begin{aligned} r_{n}\in \left( q_0^*,{ r}\right) \cap {{\mathcal {U}}}. \end{aligned}$$

Write \((\theta _i)=\alpha (q_0^*)\) and let \(\xi _n=\theta _1\ldots \theta _{2^n p}\). Denote by \(X_A^{(n)}\) the subshift of finite type over the states \(\left\{ \xi _n, \xi _n^-, \overline{\xi _n}, \overline{\xi _n^-}\right\} \) with adjacency matrix

$$\begin{aligned} A=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 0&{}0 &{}1 &{}1 \\ 1&{}0&{}0 &{}0 \\ 1&{}1&{}0 &{}0\\ 0&{}0&{}1&{}0 \end{array} \right) . \end{aligned}$$

Note that \(\alpha (r_n)=\theta _1\ldots \theta _{2^n p}(\theta _{2^n p+1}\ldots \theta _{2^{n+1}p})^\infty \). Then by Lemmas 3.2 and 2.3 it follows that

$$\begin{aligned} X_A^{(n)}\subseteq {{\mathcal {U}}}_{r_{n}}'\subseteq {{\mathcal {U}}}_r'. \end{aligned}$$
(6)

Furthermore, note that

$$\begin{aligned} \xi _n\overline{\xi _n^-}(\overline{\xi _n} \xi _n)^3&=\theta _1\ldots \theta _{2^{n+1}p}\left( \overline{\theta _1\ldots \theta _{2^{n+1}p}}\,^+\right) ^3\\&=\theta _1\ldots \theta _{2^{n+2}p}\left( \overline{\theta _1\ldots \theta _{2^{n+1}p}}\,^+\right) ^2\\&>\theta _1\ldots \theta _{2^{n+2}p}\overline{\theta _1\ldots \theta _{2^{n+1}p}\theta _{2^{n+1}p+1}\ldots \theta _{2^{n+2}p}}\,^+\\&=\theta _1\ldots \theta _{2^{n+2}p}\theta _{2^{n+2}p+1}\ldots \theta _{2^{n+3}p}. \end{aligned}$$

Then by Lemmas 2.3 and 3.1 it follows that any sequence starting at

$$\begin{aligned} {\mathbf {c}}:=\xi _n^- \xi _n\overline{\xi _n^-}(\overline{\xi _n} \xi _n)^3 \end{aligned}$$

can not belong to \({{\mathcal {U}}}_{r_{n+2}}'\). Therefore, by (6) we obtain

$$\begin{aligned} X_A^{(n)}({\mathbf {c}}) :=\left\{ (d_i)\in X_A^{(n)}: d_1\ldots d_{(2^{n+3}+2^n)p}={\mathbf {c}}\right\} \subseteq X_A^{(n)}{\setminus }{{\mathcal {U}}}_{r_{n+2}}' \subset {{\mathcal {U}}}_r'{\setminus }{{\mathcal {U}}}_{q_0^*}'. \end{aligned}$$
(7)

Note that the subshift of finite type \(X_A^{(n)}\) is irreducible (cf. [22]), and the image \(\pi _{M+1}(X_A^{(n)})\) is a graph-directed set satisfying the open set condition (cf. [23]). Then by (7) it follows that

$$\begin{aligned} \dim _H\pi _{M+1}\left( {{\mathcal {U}}}_r'{\setminus }{{\mathcal {U}}}_{q_0^*}'\right)&\ge \dim _H\pi _{M+1}(X_A^{(n)}({\mathbf {c}}))\\&=\dim _H\pi _{M+1}(X_A^{(n)}) =\frac{\log \left( (1+\sqrt{5})/2\right) }{2^n p\log (M+1)}>0. \end{aligned}$$

\(\square \)

The following lemma can be shown in a way which resembles closely the analysis in [21, pp. 2829–2830]. For the sake of completeness we include a sketch of its proof.

Lemma 3.4

Let \((q_0, q_0^*)\subset (q',M+1){\setminus }\overline{{{\mathcal {U}}}}\) be a connected component. Then \(\dim _H\pi _{M+1}({{\mathcal {U}}}_{q_0^*}'{\setminus }{{\mathcal {U}}}_{q_0}')=0\).

Proof

(Sketch of the proof) Suppose that \((q_0, q_0^*)\) is a connected component generated by \({{\mathbf {t}}}=t_1\ldots t_p\). Then

$$\begin{aligned} \alpha (q_0)={{\mathbf {t}}}^\infty \quad \text {and}\quad \alpha \left( q_0^*\right) =\lim _{n\rightarrow \infty }g^n({{\mathbf {t}}})={{\mathbf {t}}}^+\,\overline{{{\mathbf {t}}}}\;\overline{{{\mathbf {t}}}^+}\,{{\mathbf {t}}}^+ \ldots , \end{aligned}$$
(8)

where \(g(\cdot )\) is defined in (2).

For \(n\ge 0\) let \({\omega }_n:=g^n({{\mathbf {t}}})^+\). Take \((d_i)\in {{\mathcal {U}}}_{q_0^*}'{\setminus }{{\mathcal {U}}}_{q_0}'\). Then by using (8) and Lemma 2.3 it follows that there exists \(m\ge 1\) such that

$$\begin{aligned} {{\mathbf {t}}}^\infty =\alpha (q_0)\le d_{m+1}d_{m+2}\ldots <\alpha \left( q_0^*\right) ={{\mathbf {t}}}^+\overline{{{\mathbf {t}}}} \ldots , \end{aligned}$$
(9)

or symmetrically,

$$\begin{aligned} {{\mathbf {t}}}^\infty =\alpha (q_0)\le \overline{d_{m+1}d_{m+2}\ldots }<\alpha \left( q_0^*\right) ={{\mathbf {t}}}^+\overline{{{\mathbf {t}}}} \ldots . \end{aligned}$$
(10)

Suppose \((d_{m+i})\ne {{\mathbf {t}}}^\infty \) and \((d_{m+i})\ne \overline{{{\mathbf {t}}}^\infty }\). Then there exists \(u\ge m\) such that

$$\begin{aligned} d_{u+1}\ldots d_{u+p}={{\mathbf {t}}}^+={\omega }_0\quad \text {or}\quad d_{u+1}\ldots d_{u+p}=\overline{{{\mathbf {t}}}^+}=\overline{{\omega }_0}. \end{aligned}$$
  • If \(d_{u+1}\ldots d_{u+p}={\omega }_0={{\mathbf {t}}}^+\), then by (9) and Lemma 2.3 it follows that

    $$\begin{aligned} d_{u+p+1}\ldots d_{u+2p}=\overline{{{\mathbf {t}}}^+} \quad \text {or}\quad d_{u+p+1}\ldots d_{u+2p}=\overline{{{\mathbf {t}}}}. \end{aligned}$$

    This implies \(d_{u+1}\ldots d_{u+2p}={{\mathbf {t}}}^+\overline{{{\mathbf {t}}}^+} ={\omega }_0\,\overline{{\omega }_0}\) or \( d_{u+1}\ldots d_{u+2p}={{\mathbf {t}}}^+\overline{{{\mathbf {t}}}}={\omega }_1.\)

  • If \(d_{u+1}\ldots d_{u+p}=\overline{{\omega }_0}=\overline{{{\mathbf {t}}}^+}\), then by (10) and Lemma 2.3 it follows that

    $$\begin{aligned} d_{u+p+1}\ldots d_{u+2p}={{{\mathbf {t}}}^+} \quad \text {or}\quad d_{u+p+1}\ldots d_{u+2p}={{\mathbf {t}}}. \end{aligned}$$

    This yields that \(d_{u+1}\ldots d_{u+2p}=\overline{{\omega }_0}\,{\omega }_0\) or \(d_{u+1}\ldots d_{u+2p}=\overline{{\omega }_1}\).

Note that for each \(n\ge 0\) the word \(g^n({{\mathbf {t}}})^+\,\overline{g^n({{\mathbf {t}}})}\) is a prefix of \(\alpha (q_0^*)\). By iteration of the above arguments, one can show that if \(d_{v+1}\ldots d_{v+2^n p}={\omega }_n\), then \(d_{v+1}\ldots d_{v+2^{n+1}p}={\omega }_n\overline{{\omega }_n}\) or \({\omega }_{n+1}\). Symmetrically, if \(d_{v+1}\ldots d_{v+2^n p}=\overline{{\omega }_n}\), then \(d_{v+1}\ldots d_{v+2^{n+1}p}=\overline{{\omega }_n}{\omega }_n\) or \(\overline{{\omega }_{n+1}}\).

Hence, we conclude that \((d_{i})\) must end with

$$\begin{aligned} {{\mathbf {t}}}^* ({\omega }_{i_0}\overline{{\omega }_{i_0}})^{*}({\omega }_{i_0}\overline{{\omega }_{j_0}})^{s_0}({\omega }_{i_1}\overline{{\omega }_{i_1}})^{*} ({\omega }_{i_1}\overline{{\omega }_{j_1}})^{s_1}\ldots ({\omega }_{i_n}\overline{{\omega }_{i_n}})^{*}({\omega }_{i_n}\overline{{\omega }_{j_n}})^{s_n}\ldots \end{aligned}$$

or its reflections, where \(s_n\in \left\{ 0,1\right\} \) and

$$\begin{aligned} 0=i_0<j_0\le i_1<j_1\le i_2<\cdots \le i_n<j_n\le i_{n+1}<\cdots . \end{aligned}$$

Here \(*\) is an element of the set \(\left\{ 0,1,2,\ldots \right\} \cup \left\{ \infty \right\} \).

Since the length of \({\omega }_n=g^n({{\mathbf {t}}})^+\) grows exponentially fast as \(n\rightarrow \infty \), we conclude that \(\dim _H\pi _{M+1}({{\mathcal {U}}}_{q_0^*}'{\setminus }{{\mathcal {U}}}_{q_0}')=0\). \(\square \)

Proof of Theorem 1.1 for (i) \(\Leftrightarrow \) (ii) First we prove (i) \(\Rightarrow \) (ii). If \(q=q_0^*\) is the right endpoint of a connected component of \((q', M+1){\setminus }\overline{{{\mathcal {U}}}}\), then by Lemma 3.3 we have

$$\begin{aligned} \dim _H\pi _{M+1}({{\mathcal {U}}}_r'{\setminus }{{\mathcal {U}}}_q')>0\quad \text {for any }\quad r\in (q, M+1]. \end{aligned}$$

Clearly, it is trivial when \(q=M+1\). Now we take \(q\in ({{\mathcal {U}}}{\setminus }\left\{ M+1\right\} ){\setminus }\bigcup \left\{ q_0^*\right\} \) and take \(r\in (q, M+1]\). By Lemma 2.6 (i) one can find \(q_0^*\in (q,r)\), and therefore by Lemma 3.3 we obtain

$$\begin{aligned} \dim _H\pi _{M+1}\left( {{\mathcal {U}}}_r'{\setminus }{{\mathcal {U}}}_q'\right) \ge \dim _H\pi _{M+1}\left( {{\mathcal {U}}}_r'{\setminus }{{\mathcal {U}}}_{q_0^*}'\right) >0. \end{aligned}$$

Now we prove (ii) \(\Rightarrow \) (i). Take \(q\in (1, M+1]{\setminus }{{\mathcal {U}}}\). We will show that \(\dim _H\pi _{M+1}({{\mathcal {U}}}_r'{\setminus }{{\mathcal {U}}}_q')=0\) for some \(r\in (q, M+1]\). Note that \(\bigcup \left\{ q_0\right\} =\overline{{{\mathcal {U}}}}{\setminus }{{\mathcal {U}}}\). Then by (1) it follows that

$$\begin{aligned} q\in (1,q')\cup \bigcup \left[ q_0, q_0^*\right) . \end{aligned}$$

Therefore, it suffices to prove \(\dim _H\pi _{M+1}({{\mathcal {U}}}_r'{\setminus }{{\mathcal {U}}}_q')=0\) for some \(r\in (q, M+1]\). We distinct the following two cases.

Case (I). \(q\in (1,q')\). Then for any \(r\in (q,q')\) we have

$$\begin{aligned} \dim _H\pi _{M+1}({{\mathcal {U}}}_r'{\setminus }{{\mathcal {U}}}_q')\le \dim _H\pi _{M+1}({{\mathcal {U}}}_r')=0, \end{aligned}$$

where the last equality follows by [21, Theorem 4.6] (see also [4, 14]).

Case (II). \(q\in [q_0, q_0^*)\). Then for any \(r\in (q,q_0^*)\) we have by Lemma 3.4 that

$$\begin{aligned} \dim _H\pi _{M+1}\left( {{\mathcal {U}}}_r'{\setminus }{{\mathcal {U}}}_q'\right) \le \dim _H\pi _{M+1}\left( {{\mathcal {U}}}_{q_0^*}'{\setminus }{{\mathcal {U}}}_{q_0}'\right) =0. \end{aligned}$$

\(\square \)

3.2 Proof of Theorem 1.1 for (i) \(\Leftrightarrow \) (iii)

The following property for the Hausdorff dimension is well-known (cf. [13, Proposition 2.3]).

Lemma 3.5

Let \(f: (X, d_1)\rightarrow (Y, d_2)\) be a map between two metric spaces . If there exist constants \(C>0\) and \(\lambda >0\) such that

$$\begin{aligned} d_2(f(x), f(y))\le C d_1(x, y)^\lambda \end{aligned}$$

for any \(x, y\in X\), then \(\dim _H X\ge \lambda \dim _H f(X)\).

Lemma 3.6

Let \(q\in {{{\mathcal {U}}}}{\setminus }\left\{ M+1\right\} \). Then for any \(r\in (q, M+1)\) we have

$$\begin{aligned} \dim _H{{\mathcal {U}}}\cap (q, r)\ge \dim _H\pi _{M+1}\left( \left\{ \alpha (p): p\in {{\mathcal {U}}}\cap (q, r)\right\} \right) . \end{aligned}$$

Proof

Fix \(q\in {{{\mathcal {U}}}}{\setminus }\left\{ M+1\right\} \) and \(r\in (q, M+1)\). Then Lemma 2.6 yields that \({{\mathcal {U}}}\cap (q, r)\) contains infinitely many elements. Take \(p_1, p_2\in {{\mathcal {U}}}\cap (q, r)\) with \(p_1<p_2\). Then by Lemma 2.1 we have \(\alpha (p_1)<\alpha (p_2)\). So, there exists \(n\ge 1\) such that

$$\begin{aligned} \alpha _1(p_1)\ldots \alpha _{n-1}(p_1)=\alpha _1(p_2)\ldots \alpha _{n-1}(p_2)\quad \text {and}\quad \alpha _n(p_1)<\alpha _n(p_2). \end{aligned}$$
(11)

This implies

$$\begin{aligned} \pi _{M+1}(\alpha (p_2))-\pi _{M+1}(\alpha (p_1))= & {} \sum _{i=1}^\infty \frac{\alpha _i(p_2)-\alpha _i(p_1)}{(M+1)^i}\nonumber \\\le & {} \sum _{i=n}^\infty \frac{M}{(M+1)^i}=(M+1)^{1-n}. \end{aligned}$$
(12)

Note that \(r<M+1\). By Lemma 2.1 we have \(\alpha (r)<\alpha (M+1)=M^\infty \). Then there exists \(N\ge 1\) such that

$$\begin{aligned} \alpha _1(r)\ldots \alpha _N(r)<\underbrace{M\ldots M}_N. \end{aligned}$$

Therefore, by (11) and Lemma 2.3 we obtain

$$\begin{aligned} \sum _{i=1}^n\frac{\alpha _i(p_2)}{p_1^i}\ge \sum _{i=1}^\infty \frac{\alpha _i(p_1)}{p_1^i}=1=\sum _{i=1}^\infty \frac{\alpha _i(p_2)}{p_2^i}>\sum _{i=1}^n\frac{\alpha _i(p_2)}{p_2^i}+\frac{1}{p_2^{n+N}}. \end{aligned}$$

Note that \(p_1, p_2\) are elements of \({{\mathcal {U}}}\). Then \(p_2>p_1\ge q'\). This implies

$$\begin{aligned} \frac{1}{(M+1)^{n+N}}&<\frac{1}{p_2^{n+N}}<\sum _{i=1}^n\left( \frac{\alpha _i(p_2)}{p_1^i}-\frac{\alpha _i(p_2)}{p_2^i}\right) \\&\le \sum _{i=1}^\infty \left( \frac{M}{p_1^i}-\frac{M}{p_2^i}\right) =\frac{M(p_2-p_1)}{(p_1-1)(p_2-1)}\le \frac{M(p_2-p_1)}{(q'-1)^2}. \end{aligned}$$

Therefore, by (12) it follows that

$$\begin{aligned} \pi _{M+1}(\alpha (p_2))-\pi _{M+1}(\alpha (p_1))\le (M+1)^{1-n}\le \frac{(M+1)^{2+N}}{(q'-1)^2}(p_2-p_1). \end{aligned}$$

Furthermore, by Lemma 2.1 it follows that \(\pi _{M+1}(\alpha (p_2))-\pi _{M+1}(\alpha (p_1))\ge 0\). Hence, by using

$$\begin{aligned} f=\pi _{M+1}\circ \alpha : {{\mathcal {U}}}\cap (q, r)\rightarrow \pi _{M+1}(\left\{ \alpha (p): p\in {{\mathcal {U}}}\cap (q, r)\right\} ) \end{aligned}$$

in Lemma 3.5 we establish the lemma. \(\square \)

Lemma 3.7

Let \((q_0, q_0^*)\) be a connected component of \((q', M+1){\setminus }\overline{{{\mathcal {U}}}}\). Then \(\dim _H{{\mathcal {U}}}\cap (q_0^*, r)>0\) for any \(r\in (q_0^*, M+1]\).

Proof

Suppose that \((q_0, q_0^*)\) is a connected component generated by \(t_1\ldots t_p\). Let \((\theta _i)=\alpha (q_0^*)\). For \(n\ge 2\) we write \(\xi _n=\theta _1\ldots \theta _{2^n p}\), and denote by

$$\begin{aligned} \varGamma _n':= \left\{ (d_i): d_1\ldots d_{2^{n+1}p}=\xi _{n-1}\left( \overline{\xi _{n-1}}\,^+\right) ^3, \quad (d_{2^{n+1}p+i}) \in X_A^{(n)}(\overline{\xi _n}) \right\} . \end{aligned}$$

Here \(X_A^{(n)}(\overline{\xi _n})\) is the follower set of \(\overline{\xi _n}\) in the subshift of finite type \(X_A^{(n)}\) defined in (7). Now we claim that any sequence \((d_i)\in \varGamma _n'\) satisfies

$$\begin{aligned} \overline{(d_i)}<\sigma ^j((d_i))<(d_i)\quad \text {for all} \quad j\ge 1. \end{aligned}$$
(13)

Take \((d_i)\in \varGamma _n'\). Then we deduce by the definition of \(\varGamma _n'\) that

$$\begin{aligned} d_1\ldots d_{2^{n+1}p+2^{n-1} p}=\theta _1\ldots \theta _{2^{n-1}p}\left( \overline{\theta _1\ldots \theta _{2^{n-1}p}}\,^+\right) ^3\, \overline{\theta _1\ldots \theta _{2^{n}p}}. \end{aligned}$$
(14)

We will split the proof of (13) into the following five cases.

  1. (a)

    \(1\le j<2^{n-1}p\). By (14) and Lemma 2.5 it follows that

    $$\begin{aligned} \overline{\theta _1\ldots \theta _{2^{n-1}p-j}}<d_{j+1}\ldots d_{2^{n-1}p}=\theta _{j+1}\ldots \theta _{2^{n-1}p}\le \theta _1\ldots \theta _{2^{n-1}p-j}, \end{aligned}$$

    and

    $$\begin{aligned} d_{2^{n-1}p+1}\ldots d_{2^{n-1}p+j}=\overline{\theta _1\ldots \theta _j}<\theta _{2^{n-1}p-j+1}\ldots \theta _{2^{n-1}p}. \end{aligned}$$

    This implies that (13) holds for all \(1\le j<2^{n-1}p\).

  2. (b)

    \(2^{n-1}p\le j<2^n p\). Let \(k=j-2^{n-1}p\). Then \(0\le k<2^{n-1}p\). Clearly, if \(k=0\), then by using \(\theta _1>\overline{\theta _1}\) and \(n\ge 2\) it yields that

    $$\begin{aligned} \overline{\theta _1\ldots \theta _{2^{n-1}p}}<d_{j+1}\ldots d_{2^n p}=\overline{\theta _1\ldots \theta _{2^{n-1}p}}\,^+<\theta _1\ldots \theta _{2^{n-1}p}. \end{aligned}$$

    Now we assume \(1\le k<2^{n-1}p\). Then by (14) and Lemma 2.5 it follows that

    $$\begin{aligned} \overline{\theta _1\ldots \theta _{2^{n-1}p-k}}<d_{j+1}\ldots d_{2^n p}=\overline{\theta _{k+1}\ldots \theta _{2^{n-1}p}}\,^+\le \theta _1\ldots \theta _{2^{n-1}p-k}, \end{aligned}$$

    and

    $$\begin{aligned} d_{2^{n}p+1}\ldots d_{2^n p+k}=\overline{\theta _1\ldots \theta _k}<\theta _{2^{n-1}p-k+1}\ldots \theta _{2^{n-1}p}. \end{aligned}$$

    Therefore, (13) holds for all \(2^{n-1}p\le j<2^n p\).

  3. (c)

    \(2^n p\le j<2^n p+2^{n-1}p\). Let \(k=j-2^n p\). Then in a similar way as in Case (b) one can prove (13).

  4. (d)

    \(2^np+2^{n-1}p\le j<2^{n+1}p\). Let \(k=j-2^np-2^{n-1}p\). Again by the same arguments as in Case (b) we obtain (13).

  5. (e)

    \(j\ge 2^{n+1}p\). Note that

    $$\begin{aligned} d_1\ldots d_{2^{n+1}p}=\theta _1\ldots \theta _{2^{n-1}p}\left( \overline{\theta _1\ldots \theta _{2^{n-1}p}}\,^+\right) ^3>\theta _1\ldots \theta _{2^{n+1}p}. \end{aligned}$$

    Then (13) follows by Lemma 3.2.

Therefore, by (13) and Lemma 2.4 it follows that any sequence in \(\varGamma _n'\) corresponds to a unique base \(q\in {{\mathcal {U}}}\). Furthermore, by (14) and Lemma 3.1 each sequence \((d_i)\in \varGamma _n'\) satisfies

$$\begin{aligned} \alpha \left( q_0^*\right) =(\theta _i)<(d_i)<\theta _1\ldots \theta _{2^{n-1}p}\left( \overline{\theta _1\ldots \theta _{2^{n-1}p}}\,^+\right) ^\infty =\alpha (r_{n-1}). \end{aligned}$$

Then by Lemma  2.1 it follows that

$$\begin{aligned} \alpha (q)\in \varGamma _n'\Longrightarrow q\in {{\mathcal {U}}}\cap \left( q_0^*, r_{n-1}\right) . \end{aligned}$$

Fix \(r>q_0^*\). So by Lemma 3.1 there exists a sufficiently large integer \(n\ge 2\) such that

$$\begin{aligned} \varGamma _n'\subset \left\{ \alpha (q): q\in {{\mathcal {U}}}\cap \left( q_0^*, r\right) \right\} . \end{aligned}$$
(15)

Note by the proof of Lemma 3.3 that \(X_A^{(n)}\) is an irreducible subshift of finite type over the states \(\left\{ \xi _n, \xi _n^-, \overline{\xi _n}, \overline{\xi _n^-}\right\} \). Hence, by (15) and Lemma 3.6 it follows that

$$\begin{aligned} \dim _H{{\mathcal {U}}}\cap \left( q_0^*, r\right) \ge \dim _H\pi _{M+1}(\varGamma _n')&=\dim _H\pi _{M+1}(X_A^{(n)})\\&=\frac{\log \left( (1+\sqrt{5})/2\right) }{2^n p\log (M+1)} \;>0. \end{aligned}$$

\(\square \)

Proof of Theorem  1.1 for (i) \(\Leftrightarrow \) (iii) First we prove (i) \(\Rightarrow \) (iii). Excluding the trivial case \(q=M+1\) we take \(q\in {{\mathcal {U}}}{\setminus }\left\{ M+1\right\} \). Suppose that \(r \in (q,M+1]\). If \(q=q_0^*\), then by Lemma 3.7 we have \( \dim _H{{\mathcal {U}}}\cap (q, r)>0. \)

If \(q\in ({{\mathcal {U}}}{\setminus }\left\{ M+1\right\} ) {\setminus }\bigcup \left\{ q_0^*\right\} \), then by Lemma 2.6 (i) there exists \(q_0^*\in (q, r)\). So, by Lemma 3.7 we have

$$\begin{aligned} \dim _H{{\mathcal {U}}}\cap (q,r)\ge \dim _H{{\mathcal {U}}}\cap \left( q_0^*, r\right) >0. \end{aligned}$$

Now we prove (iii) \(\Rightarrow \) (i). Suppose on the contrary that \(q\in (1,M+1]{\setminus }{{\mathcal {U}}}\). We will show that \({{\mathcal {U}}}\cap (q,r)=\emptyset \) for some \(r\in (q, M+1]\). Take \(q\in (1, M+1]{\setminus }{{\mathcal {U}}}\). By (1) it follows that

$$\begin{aligned} q\in (1, q')\cap \bigcup [q_0, q_0^*). \end{aligned}$$

This implies that \({{\mathcal {U}}}\cap (q,r)=\emptyset \) for \(r \in (q, M+1]\) sufficiently close to q. \(\square \)

3.3 Proof of Theorem 1.2

Proof of Theorem 1.2 (i) \(\Rightarrow \) (ii) Take \(q\in \overline{{{\mathcal {U}}}}{\setminus }(\bigcup \left\{ q_0^*\right\} \cup \left\{ q'\right\} )\) and \(p\in (1,q)\). By Lemma 2.6 (ii) there exists \(q_0^*\in (p,q)\). Hence, by Lemma 3.3 it follows that

$$\begin{aligned} \dim _H\pi _{M+1}\left( {{\mathcal {U}}}_q'{\setminus }{{\mathcal {U}}}_p'\right) \ge \dim _H\pi _{M+1}\left( {{\mathcal {U}}}_q'{\setminus }{{\mathcal {U}}}_{q_0^*}'\right) >0. \end{aligned}$$

(ii) \(\Rightarrow \) (i). Suppose on the contrary that \(q\notin \overline{{{\mathcal {U}}}}{\setminus }(\bigcup \left\{ q_0^*\right\} \cup \left\{ q'\right\} )\). Then by (1) we have

$$\begin{aligned} q\in (1,q']\cup \bigcup \left( q_0, q_0^*\right] . \end{aligned}$$

By using Lemma 3.4 it follows that for \(p\in (1,q)\) sufficiently close to q we have \(\dim _H\pi _{M+1}({{\mathcal {U}}}_q'{\setminus }{{\mathcal {U}}}_p')=0\).

(i) \(\Rightarrow \) (iii). Take \(q\in \overline{{{\mathcal {U}}}}{\setminus }(\bigcup \left\{ q_0^*\right\} \cup \left\{ q'\right\} )\) and \(p\in (1,q)\). By Lemma 2.6 (ii) there exists \(q_0^*\in (p,q)\). Hence, by Lemma 3.7 it follows that

$$\begin{aligned} \dim _H{{\mathcal {U}}}\cap (p,q)\ge \dim _H{{\mathcal {U}}}\cap \left( q_0^*, q\right) >0. \end{aligned}$$

(iii) \(\Rightarrow \) (i). Suppose \(q\notin \overline{{{\mathcal {U}}}}{\setminus }(\bigcup \left\{ q_0^*\right\} \cup \left\{ q'\right\} )\). Then by (1) we have \( q\in (1,q']\cup \bigcup (q_0, q_0^*]. \) So, for \(p\in (1, q)\) sufficiently close to q we have \({{\mathcal {U}}}\cap (p,q)=\emptyset \). \(\square \)