Skip to main content
Log in

Generalized functions and Laguerre expansions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we study and characterize expansions of distributions in the Zemanian spaces, \({\mathcal {H}}_{\mu }\) and its dual \({\mathcal {H}}_{\mu }^{\prime }\) (\(\mu \ge -\frac{1}{2}\)) with respect to Laguerre functions. We obtain as applications of this result, the kernel Theorem and a structure Theorem for \({\mathcal {H}}_{\mu }^{\prime }\). We also introduce a new algebra of generalized functions in the sense of J. F. Colombeau such that it satisfies interesting properties involving the Hankel transformation and Hankel convolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenburg, G.: Bessel-Transformationen in Räumen von Grundfunktionen über dem Intervall \(\Omega =(0,\infty )\) und deren Dualr äumen. Math. Nachr. 108, 197–218 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Betancor, J., Marrero, I.: On the topology of Hankel multipliers and of Hankel convolution operators. Rend. Circ. Mat. Palermo 2(44), 469–478 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Betancor, J., Rodríguez-Mesa, L.: Hankel transformation of Colombeau type tempered generalized functions. J. Math. Anal. Appl. 217, 293–320 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Catuogno, P., Molina, S., Olivera, C.: On Hermite espansions and products of tempered distributions. Integral Transform Spec. Funct. 18, 233–244 (2007)

    Article  MATH  Google Scholar 

  5. Catuogno, P., Olivera, C.: Tempered generalized functions and Hermite expansions. Nonlinear Anal. 74, 479–493 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colombeau, J.F.: Elementary Introduction to New Generalized Functions. Math. Studies, vol. 113, North Holland, Amsterdam (1985)

  7. Duran, A.J.: Laguerre expansions of tempered distributions and generalized functions. J. Math. Anal. Appl. 150, 166–180 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duran, A.J.: The Stieltjes moments problem for repidly decreasing functions. Proc. Am. Math. Soc. 107(3), 731–741 (1989)

    Article  MATH  Google Scholar 

  9. Estrada, R., Kanwal, R.P.: A Distributional Approach to Asymptotics. Birkhuser, Boston (2002)

    Book  MATH  Google Scholar 

  10. Guillemot-Teissiers, M.: Développments des distributions en séries de fonctions orthogonales: Séries de Legendre et de Laguerre. Ann. Scuola Norm. Sup. Pisa 3(25), 519–573 (1971)

    MATH  Google Scholar 

  11. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, London (1994)

    MATH  Google Scholar 

  12. Jaksic, S., Prangoski, B.: Extension Theorem of Whitney Type for \({\cal{S}}({\mathbb{R}}_+^d)\) by the Use of the Kernel Theorem. arXiv:1602.04008

  13. Kilbas, A., Trujillo, J.: Hankel–Schwartz and Hankel–Clifford transforms on \(L, p\)-spaces. Results Math. 43(3–4), 284–299 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lebedev, N.: Special Function and Their Applications. Dover Publications, New York (1972)

    MATH  Google Scholar 

  15. Méndez, J.: On the Bessel transformation of arbitrary order. Math. Nachr. 136, 233–239 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Molina, S., Trione, S.E.: n-Dimensional Hankel transform and complex powers of Bessel operator. Integral Transform Spec. Funct. 18, 897–911 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oberguggenberger, M.: Multiplication of distributions and applications to partial differential equations. Pitman Research Notes in Mathematics, vol. 259. Longman, Harlow, UK. ISBN: 978-0-582-08733-0 (1992)

  18. Oberhettinger, F.: Tables of Bessel Transforms. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  19. Pathak, R.: Integral Transforms of Generalized Functions and Their Applications. Gordon and Breach Science Publishers, London (1997)

    MATH  Google Scholar 

  20. Pilipovic, S.: On the Laguerre expansions of generalized functions. C. R. Math. Rep. Acad. Sci. Can. 11(1), 23–27 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Rodríguez-Mesa, L.: Colombeau type generalized functions of compact spectrum with respect to the Hankel transformation. Math. Nachr. 230, 143–157 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schwartz, A.: An inversion theorem for Hankel transforms. Proc. Am. Math. Soc. 22, 713–717 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)

    MATH  Google Scholar 

  24. Simon, B.: Distributions and their Hermite expansions. J. Math. Phys. 12(1), 140–148 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thangavelu, S.: Lectures on Hermite and Laguerre Expansions. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  26. Zemanian, A.H.: A distributional Hankel transform. SIAM J. Appl. Math. 14, 561–576 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zemanian, A.H.: Generalized Integral Transformations. Dover Publications, New York (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

Christian Olivera is partially supported by CNPq through the Grant 460713/2014-0 and FAPESP by the Grants 2015/04723-2 and 2015/07278-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Olivera.

Additional information

Communicated by A. Constantin.

Appendix

Appendix

1.1 Boundedness of Laguerre polynomials

Duran [7, Corollary 2.2] gives the following bound for generalized Laguerre polynomials. Let \(\mu > -2\) and \(n \in {\mathbf {N}}_0\). Then

$$\begin{aligned} \left| L_{n}^{\mu }(t)\right| \le 2 \frac{(n+[\mu ]+2)!}{n!\,\,([\mu ]+2)!}\,\,e^{\frac{t}{2}} \end{aligned}$$
(29)

where [x] is the integer part of x.

1.2 Boundedness of \(c_{\mu ,k}\)

Proposition 6

Let \(c_{\mu ,k}=\Bigl (\frac{2\Gamma (k+1)}{\Gamma (k+\mu +1)}\Bigr )^{\frac{1}{2}}\). Then there exists a constant \(C(\mu )\) depending only of \(\mu \), such that for \(\mu > -1\) and for all \(k \in {\mathbf {N}}_0\),

$$\begin{aligned} c_{\mu , k} \le C(\mu )(k+\mu + 1)^{\frac{1}{2}}. \end{aligned}$$
(30)

Proof

We observe that for \(\mu > 0\),

$$\begin{aligned} c_{\mu ,k}= & {} \left( \frac{\Gamma (k+1)\Gamma (\mu +1)}{\Gamma (k+\mu +1)}\right) ^{\frac{1}{2}} \,\left( \frac{2}{\Gamma (\mu +1)}\right) ^{\frac{1}{2}}\\= & {} (B(k+1,\mu +1))^{\frac{1}{2}}\left( \frac{2(k+\mu +1)}{\Gamma (\mu +1)}\right) ^{\frac{1}{2}} \\\le & {} \left( \frac{2}{\Gamma (\mu +1)}\int _0^1(1-t)^{\mu -1}t^kdt\right) ^{\frac{1}{2}}\left( k+\mu +1\right) ^{\frac{1}{2}} \end{aligned}$$

where \(B{:}\,{\mathbf {R}}_+ \times {\mathbf {R}}_+ \rightarrow {\mathbf {R}}\) is the beta function defined by

$$\begin{aligned} B(x,y)=\int _{0}^{1}t^{x-1}(1-t)^{y-1}\, dt. \end{aligned}$$
(31)

By other hand, if \(-1<\mu <0\),

$$\begin{aligned} c_{\mu ,k}= & {} \left( \frac{\Gamma (k+1)\Gamma (\mu )}{\Gamma (k+\mu +1)}\right) ^{\frac{1}{2}} \,\left( \frac{2}{\Gamma (\mu )}\right) ^{\frac{1}{2}} \\= & {} \left( \frac{\Gamma (k+1)\Gamma (\mu +1)(k+\mu +1)}{\Gamma (k+\mu +2)}\right) ^{\frac{1}{2}} \,\left( \frac{2}{\Gamma (\mu +1)}\right) ^{\frac{1}{2}} \\= & {} \big (B(k+1,\mu +1)\big )^{\frac{1}{2}} \,\left( \frac{2(k+\mu +1)}{\Gamma (\mu +1)}\right) ^{\frac{1}{2}} \\\le & {} \big (\frac{2}{\Gamma (\mu + 1)} \int _0^1(1-t)^{\mu }dt \big )^{\frac{1}{2}} (k +\mu + 1)^{\frac{1}{2}} \end{aligned}$$

The case \(\mu =0\) is obvious. Then for \(\mu > -1\),

$$\begin{aligned} c_{\mu ,k}\le C(\mu )(k+\mu +1)^{\frac{1}{2}}. \end{aligned}$$
(32)

\(\square \)

1.3 \({\mathcal {H}}_{\mu } \subset L^2({\mathbf {R}}_+)\), for \(\mu \ge -\frac{1}{2}\)

Proposition 7

Let \(\mu \ge -\frac{1}{2}\) and \(m>2\mu +2\). Then for \(\varphi \in {\mathcal {H}}_{\mu }\),

$$\begin{aligned} \Vert \varphi \Vert _{2}\le C_{1}\Vert \varphi \Vert _{0,0,\mu ,\infty }+C_{2}\Vert \varphi \Vert _{m,0,\mu ,\infty }, \end{aligned}$$
(33)

for certain constants \(C_{1}\) and \(C_{2}\).

Proof

We observe that

$$\begin{aligned} \Vert \varphi \Vert _{2}= & {} \Bigl \{\int _{0}^{\infty }|\varphi |x^{-\mu -\frac{1}{2}}|\varphi |x^{\mu +\frac{1}{2}}\,dx\Bigr \}^{\frac{1}{2}} \\\le & {} \Bigl \{\Vert \varphi \Vert _{0,0,\mu ,\infty }\Bigr \}^{\frac{1}{2}}\Bigl \{\int _{0}^{\infty }|\varphi |x^{\mu +\frac{1}{2}}\,dx\Bigr \}^{\frac{1}{2}} \end{aligned}$$

and

$$\begin{aligned} \int _{0}^{\infty }|\varphi |x^{\mu +\frac{1}{2}}\,dx= & {} \int _{0}^{1}|\varphi |x^{\mu +\frac{1}{2}}\,dx\\&+\,\int _{1}^{\infty }(1+x^{2})(1+x^{2})^{-1}x^{2\mu +1}x^{-\mu -\frac{1}{2}}|\varphi |\,dx \\\le & {} C \Vert \varphi \Vert _{0,0,\mu ,\infty }+C_{2}\Vert \varphi \Vert _{m,0,\mu ,\infty }. \end{aligned}$$

From elementary computation we conclude the Proposition \(\square \)

1.4 Equivalency between the families of seminorms \(\{\Vert \cdot \Vert _{m,r,\mu ,2}{:}\,m, r \in {\mathbf {N}}_0 \}\) and \(\{\Vert \cdot \Vert _{m,r,\mu ,\infty }{:}\,m, r \in {\mathbf {N}}_0\}\)

We recall the seminorms introduced in (1),

$$\begin{aligned} \Vert \varphi \Vert _{m, r, \mu , \infty }:= \sup _{x \in {\mathbf {R}}_+}\left| (1+x^2)^m (x^{-1}D)^r \left[ x^{-\mu -\frac{1}{2}}\varphi (x)\right] \right| \end{aligned}$$

and the seminorms introduced in (20),

$$\begin{aligned} \parallel \varphi \parallel _{m,r,\mu ,2}=\parallel (1+x^{2})^{m}(x^{-1}D)^{r}\left[ x^{-\mu -\frac{1}{2}}\varphi (x)\right] \parallel _{2}. \end{aligned}$$

Proposition 8

\(\{\Vert \cdot \Vert _{m,r,\mu ,2}{:}\,m, r \in {\mathbf {N}}_0 \}\) is a family of seminorms equivalent to \(\{\Vert \cdot \Vert _{m,r,\mu ,\infty }{:}\,m, r \in {\mathbf {N}}_0\}\).

Proof

Let \(\varphi \in {\mathcal {H}}_{\mu }\). We have that \((1+x^{2})^{m}(x^{-1}D)^{r}[x^{-\mu -\frac{1}{2}}\varphi ] \in L^{2}({\mathbf {R}}_+)\), for all \(m, r \in {\mathbf {N}}_0\). Then,

$$\begin{aligned} \Vert \varphi \Vert _{m,r,\mu ,2}= & {} \Bigl \{\int _{0}^{\infty }\bigl |(1+x^{2})^{-1}(1+x^{2})(1+x^{2})^{m} \nonumber \\&\cdot \,(x^{-1}D)^{r}\bigl [x^{-\mu -\frac{1}{2}}\varphi \bigr ]\bigr |^{2}\,dx\Bigr \}^{\frac{1}{2}} \nonumber \\\le & {} \Bigl \{\int _{0}^{\infty }|1+x^{2}|^{-2}\,dx\Bigr \}^{\frac{1}{2}} \nonumber \\&\cdot \,\Bigl \{\sup _{x\in (0,\infty )}\bigl |(1+x^{2})^{m+1}(x^{-1}D)^{r}\bigl [x^{-\mu -\frac{1}{2}}\varphi \bigr ]\bigr |^{2}\Bigr \}^{\frac{1}{2}} \nonumber \\\le & {} C \Vert \varphi \Vert _{m+1,r,\mu ,\infty }. \end{aligned}$$
(34)

It follows easily that \(\{\Vert \cdot \Vert _{m,r,\mu ,\infty }{:}\,m, r \in {\mathbf {N}}_0 \}\) is equivalent to \(\{\Vert \cdot \Vert ^{\prime }_{m,r,\mu ,\infty }{:}\,m, r \in {\mathbf {N}}_0 \}\), where \(\Vert \cdot \Vert ^{\prime }_{m,r,\mu ,\infty }\) are the seminorms of \({\mathcal {H}}_{\mu }\) given by

$$\begin{aligned} \Vert \varphi \Vert '_{m,r,\mu ,\infty }=\sup _{x\in {\mathbf {R}}_+}\left| x^{m}(x^{-1}D)^{r}\left[ x^{-\mu -\frac{1}{2}}\varphi (x)\right] \right| . \end{aligned}$$
(35)

In a similar way, \(\{\Vert \cdot \Vert _{m,r,\mu ,2}{:}\,m, r \in {\mathbf {N}}_0 \}\) is equivalent to \(\{\Vert \cdot \Vert ^{\prime }_{m,r,\mu ,2}{:}\,m, r \in {\mathbf {N}}_0 \}\), where \(\Vert \cdot \Vert ^{\prime }_{m,r,\mu ,2}\) are the seminorms of \({\mathcal {H}}_{\mu }\) given by

$$\begin{aligned} \Vert \varphi \Vert '_{m,r,\mu ,2}=\left\| x^{m}(x^{-1}D)^{r}\left[ x^{-\mu -\frac{1}{2}}\varphi (x)\right] \right\| _{2}. \end{aligned}$$
(36)

We observe that if \(f\in C^{1}({\mathbf {R}}_+) \) such that \(f'\) is of rapid descent (i.e a function g is of rapid descent if g verifies that \(\sup _{x\in (0,\infty )}\Vert (1+x^{2})^{m}g(x)\Vert _{\infty }<\infty \) for all integer non negative m), then

$$\begin{aligned} f(x)=-\int _{x}^{\infty }f'(t)\,dt, \quad x>0 \end{aligned}$$
(37)

and

$$\begin{aligned} \Vert f\Vert _{\infty }\le \Vert f'\Vert _{1}\le \Vert (1+x^{2})f'\Vert _{2}\Vert (1+x^{2})^{-1}\Vert _{2}. \end{aligned}$$
(38)

Let \(\varphi \in {\mathcal {H}}_{\mu }\). We observe that \(\gamma _{\mu , m, r}(x):= x^{m}(x^{-1}D)^{r}[x^{-\mu -\frac{1}{2}}\varphi (x)]\) verifies the above conditions and

$$\begin{aligned} \gamma _{\mu , m, r}^{\prime } = m\gamma _{\mu , m-1, r} +\gamma _{\mu , m+1, r+1}. \end{aligned}$$

In case that \(m=0\), applying (38) we have that

$$\begin{aligned} \Vert \varphi \Vert '_{0,r,\mu ,\infty }= & {} \bigl \Vert (x^{-1}D)^{r}\bigl [x^{-\mu -\frac{1}{2}}\varphi (x)\bigr ]\bigr \Vert _{\infty } \nonumber \\\le & {} C\bigl \Vert (1+x^{2})\bigl \{ (x^{-1}D)^{r}\bigl [x^{-\mu -\frac{1}{2}}\varphi (x)\bigr ]\bigr \}^{\prime }\bigr \Vert _{2} \nonumber \\\le & {} C\bigl \{\Vert \varphi \Vert '_{1,r+1,\mu ,2}+\Vert \varphi \Vert '_{3,r+1,\mu ,2}\bigr \}. \end{aligned}$$
(39)

In case that \(m \ge 1\),

$$\begin{aligned} \Vert \varphi \Vert '_{m,r,\mu ,\infty }= & {} \bigl \Vert x^{m}(x^{-1}D)^{r}\bigl [x^{-\mu -\frac{1}{2}}\varphi (x)\bigr ]\bigr \Vert _{\infty } \nonumber \\\le & {} C\bigl \Vert (1+x^{2})D\bigl \{ x^{m}(x^{-1}D)^{r}\bigl [x^{-\mu -\frac{1}{2}}\varphi (x)\bigr ]\bigr \}\bigr \Vert _{2} \nonumber \\\le & {} C\bigl \{m\Vert \varphi \Vert '_{m-1,r,\mu ,2}+\Vert \varphi \Vert '_{m+1,r+1,\mu ,2}+m\Vert \varphi \Vert _{m+1,r,\mu ,2} \nonumber \\&+\,\Vert \varphi \Vert '_{m+3,r+1,\mu ,2}\bigr \} \end{aligned}$$
(40)

Combining (34), (39) and (40) we completes the proof. \(\square \)

Remark 5

The above Proposition remains valid in \({\mathbb {R}}_{+}^{n}\) and the proof is similar to one dimensional case, noting that the equality (37) becomes

$$\begin{aligned} f(x)=(-1)^{n}\int _{x_{1}}^{\infty }\ldots \int _{x_{n}}^{\infty }D_{1}\ldots D_{n}f(t_{1},\ldots ,t_{n})\,dt_{1},\ldots ,dt_{n}, \end{aligned}$$

for \(x=(x_{1},\ldots ,x_{n})\in {\mathbb {R}}_{+}^{n}\), valid to \(f\in C^{n}({\mathbf {R}}_+) \) such that \(D_{1}\ldots D_{n}f\) is of rapid descent. Moreover, for T given by (25) and taking into account the commutativity of \(T_{i}\) we obtain that

$$\begin{aligned}&D_{i} T^{k}\Bigl \{x^{-\mu -\frac{1}{2}}\phi (x)\Bigr \}=D_{i}\Bigl \{T_{n}^{ k_{n}} \ldots T_{1}^{k_{1}}\Bigr \}\Bigl \{x^{-\mu -\frac{1}{2}}\phi (x)\Bigr \}\\&\quad = x_{i}\Bigl \{T_{n}^{ k_{n}} \ldots T_{i}^{k_{i}+1}\ldots T_{1}^{ k_{1}}\Bigr \}\Bigl \{x^{-\mu -\frac{1}{2}}\phi (x)\Bigr \}. \end{aligned}$$

So,

$$\begin{aligned} D_{1}\ldots D_{n} T^{k}\Bigl \{x^{-\mu -\frac{1}{2}}\phi (x)\Bigr \}=x_{1}\ldots x_{n} T^{k+1}\Bigl \{x^{-\mu -\frac{1}{2}}\phi (x)\Bigr \}, \end{aligned}$$

where \(k+1=( k_{1}+1, \ldots , k_{n}+1)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catuogno, P., Molina, S. & Olivera, C. Generalized functions and Laguerre expansions. Monatsh Math 184, 51–75 (2017). https://doi.org/10.1007/s00605-017-1045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-017-1045-y

Keywords

Mathematics Subject Classification

Navigation