Skip to main content
Log in

Generalization of the non-local derangement identity and applications to multiple zeta-type series

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The goal of this paper is the study of a transformation concerning the general K-fold finite sums of the form

$$\begin{aligned} \sum _{N\ge n_1\ge \cdots \ge n_K\ge 1}\frac{1}{b_{n_K}}\cdot \prod _{j=1}^{K-1}\frac{1}{a_{n_j}}, \end{aligned}$$

where \((K,N)\in \mathbb {N}^2\) and \(\{a_n\}_{n=1}^{\infty }\), \(\{b_n\}_{n=1}^{\infty }\) are appropriate real sequences. In the application part of our paper we apply the developed transformation to two special parametric multiple zeta-type series that generalize the well-know formula \(\zeta ^\star (\{2\}_K,1)=2\zeta (2K+1)\), \(K\in \mathbb {N}\). As a corollary of our parametric results, we also prove several sum formulas involving multiple zeta-star values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apéry, R.: Irrationalité de \(\zeta (2)\) et \(\zeta (3)\), in Journeées Arithmétiques (Luminy, 1978). Astérisque 61, 11–13 (1979)

    MATH  Google Scholar 

  2. Bhatnagar, G.: A short proof of an identity of Sylvester. Int J. Math. Math. Sci. 22, 431–435 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borwein, D., Borwein, J.M., Bradley, D.M.: Parametric Euler sum identities. J. Math. Anal. Appl. 316(1), 328–338 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bradley, D.M.: Multiple \(q\)-zeta values. J. Algebra 283, 752–798 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Flajolet, P., Salvy, B.: Euler sums and contour integral representation. Exp. Math. 7(1), 15–35 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Genčev, M.: A transformation of certain infinite series based on the non-local derangement identity. Ramanujan J. 25, 369–387 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gosper, R.W., Ismail, M.E.H., Zhang, R.: On some strange summation formulas. Illinois J. Math. 37, 240–277 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Granville, A.: A decomposition of Riemann’s zeta-function, Analytic number theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser., 247, pp. 95–101. Cambridge Univ. Press, Cambridge (1997)

  9. Hoffman, M.E.: Multiple harmonic series. Pacific J. Math. 152, 275–290 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Igarashi, M.: Cyclic sum of certain parametrized multiple series. J. Number. Theory 131, 508–518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ihara, K., Kajikawa, J., Ohno, Y., Okuda, J.: Multiple zeta values vs. multiple zeta-star values. J. Algebra 332, 187–208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Juškevič, A.P., Winter, E.: Leonhard Euler und Christian Goldbach: Briefwechsel 1729–1764. Akademie-Verlag, Berlin (1965)

    Google Scholar 

  13. Kelley, W.G., Peterson, A.C.: Difference Equations. An Introduction with Applications. Academic Press, London (2001)

    MATH  Google Scholar 

  14. Knopp, K.: Infinite Sequences and Series. Dover Publications, New York (1956)

    MATH  Google Scholar 

  15. Ohno, Y., Wakabayashi, N.: Cyclic sum of multiple zeta values. Acta Arith. 123(3), 289–295 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ohno, Y., Zudilin, W.V.: Zeta stars. Commun. Number Theory Phys. 2(2), 325–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pilehrood, K.H., Pilehrood, T.H.: On \(q\)-analogs of two-one formulas for multiple harmonic sums and multiple zeta star values. Monatsh. Math. 176(2), 275–291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Riordan, J.: Combinatorial Identities. R.E. Krieger Publishing Company, New York (1979)

    MATH  Google Scholar 

  19. Rivoal, T.: La fonction Zeta de Riemann prend une infinit de valeurs irrationnelles aux entiers impairs. Comptes Rendus Acad. Sci. Paris 331, 267–270 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smirnov, V.A.: Analytic Tools for Feynmann Integrals. Springer, Berlin (2012)

    Book  Google Scholar 

  21. Srivastava, H.M., Choi, J.: Zeta and \(q\)-Zeta Functions and Associated Series and Integrals. Elsevier, London (2012)

    MATH  Google Scholar 

  22. Zagier, D.: Values of zeta functions and their applications. In: Proceedings of ECM 1992, Progress in Mathmatics 120, pp. 497–512 (1994)

  23. Zeng, J.: On some \(q\)-series identities related to divisor functions. Adv. Appl. Math. 34, 313–315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zlobin, S.A.: Generating functions for the values of a multiple zeta function. Moscow Univ. Math. Bull. 60, 44–48 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Zudilin, W.V.: One of the numbers \(\zeta (5)\), \(\zeta (7)\), \(\zeta (9)\), \(\zeta (11)\) is irrational. Uspekhi Mat. Nauk 56(4), 149–150 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank J. Hamilton for his valuable language suggestions and the anonymous referee for his/her constructive remarks that improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Genčev.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genčev, M. Generalization of the non-local derangement identity and applications to multiple zeta-type series. Monatsh Math 184, 217–243 (2017). https://doi.org/10.1007/s00605-016-0984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-016-0984-z

Keywords

Mathematics Subject Classification

Navigation