Skip to main content
Log in

Global series for height 1 multiple zeta functions

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We use everywhere-convergent series for the height 1 multiple zeta functions \(\zeta (s,1,\ldots ,1)\) to determine the singular parts of their Laurent series at each of their poles, and give an expression for each first “Stieltjes constant” (i.e., the linear Laurent coefficient) as series involving the Bernoulli numbers of the second kind, generalizing the classical Mascheroni series for Euler’s constant \(\gamma \). The first Stieltjes constants at \(s=1\) and at \(s=0\) are then interpreted in terms of the Ramanujan summation of multiple harmonic star sums \(\zeta ^\star (1,\ldots ,1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama, S., Egami, S., Tanigawa, Y.: Analytic continuation of multiple zeta-functions and their values at non-positive integers. Acta Arith. 98(2), 107–116 (2001)

    Article  MathSciNet  Google Scholar 

  2. Apostol, T.M., Vu, T.H.: Dirichlet series related to the Riemann zeta function. J. Number Theory 19(1), 85–102 (1984)

    Article  MathSciNet  Google Scholar 

  3. Arakawa, T., Kaneko, M.: Multiple zeta values, poly-Bernoulli numbers, and related zeta functions. Nagoya Math. J. 153, 189–209 (1999)

    Article  MathSciNet  Google Scholar 

  4. Arakawa, T., Kaneko, M.: On multiple \(L\)-values. J. Math. Soc. Japan 56(4), 967–991 (2004)

    Article  MathSciNet  Google Scholar 

  5. Berndt, B.C.: Ramanujan’s Notebooks. Springer, Berlin (1985)

    Book  Google Scholar 

  6. Boyadzhiev, K.N.: A special constant and series with zeta values and harmonic numbers. Gaz. Mat. Ser. A 115, 1–16 (2018)

    Google Scholar 

  7. Boyadzhiev, K.N., Gadiyar, H.G., Padma, R.: The values of an Euler sum at the negative integers and a relation to a certain convolution of Bernoulli numbers. Bull. Korean Math. Soc. 45(2), 277–283 (2008)

    Article  MathSciNet  Google Scholar 

  8. Candelpergher, B.: Ramanujan Summation of Divergent Series. Lecture Notes in Mathematics, vol. 2185. Springer, Cham (2017)

  9. Candelpergher, B., Coppo, M.-A.: Laurent expansion of harmonic zeta functions. J. Math. Anal. Appl. 491, 124309 (2020)

    Article  MathSciNet  Google Scholar 

  10. Candelpergher, B., Gadiyar, H.G., Padma, R.: Ramanujan summation and the exponential generating function \(\sum _{k=0}^\infty {z^k\over k!}\zeta ^{\prime }(-k)\). Ramanujan J. 21(1), 99–122 (2010)

    Article  MathSciNet  Google Scholar 

  11. Carlitz, L.: A note on Bernoulli and Euler polynomials of the second kind. Scripta Math. 25, 323–330 (1961)

    MathSciNet  Google Scholar 

  12. Coppo, M.-A.: Produit harmonique, sommation de Ramanujan et fonctions zêta d’Arakawa–Kaneko. Mémoire d’Habilitation à Diriger des Recherches (2016)

  13. Coppo, M.-A.: A note on some alternating series involving zeta and multiple zeta values. J. Math. Anal. Appl. 475(2), 1831–1841 (2019)

    Article  MathSciNet  Google Scholar 

  14. Coppo, M.-A.: New identities involving Cauchy numbers, harmonic numbers and zeta values. Results Math. 76(4), 189 (2021)

    Article  MathSciNet  Google Scholar 

  15. Coppo, M.-A.: Miscellaneous series identities with Cauchy and harmonic numbers and their interpretation as Ramanujan summation. Integers 23, 61 (2023)

    MathSciNet  Google Scholar 

  16. Coppo, M.-A., Candelpergher, B.: A complement to Laurent expansion of harmonic zeta functions. Science 36, 2568 (2022)

    Google Scholar 

  17. Hessami Pilehrood, K., Hessami Pilehrood, T., Tauraso, R.: Multiple harmonic sums and multiple harmonic star sums are (nearly) never integers. Integers 17, Art. No. A10 (2017)

  18. Kaneko, M., Sakata, M.: On multiple zeta values of extremal height. Bull. Aust. Math. Soc. 93(2), 186–193 (2016)

    Article  MathSciNet  Google Scholar 

  19. Lagarias, J.C.: Euler’s constant: Euler’s work and modern developments. Bull. Amer. Math. Soc. (N.S.) 50(4), 527–628 (2013)

  20. Loeb, D.E., Rota, G.-C.: Formal power series of logarithmic type. Adv. Math. 75(1), 1–118 (1989)

    Article  MathSciNet  Google Scholar 

  21. Matsuoka, Y.: On the values of a certain Dirichlet series at rational integers. Tokyo J. Math. 5(2), 399–403 (1982)

    Article  MathSciNet  Google Scholar 

  22. Ohno, Y., Zagier, D.: Multiple zeta values of fixed weight, depth, and height. Indag. Math. (N.S.) 12(4), 483–487 (2001)

  23. Roman, S.: The harmonic logarithms and the binomial formula. J. Combin. Theory Ser. A 63(1), 143–163 (1993)

    Article  MathSciNet  Google Scholar 

  24. Sesma, J.: The Roman harmonic numbers revisited. J. Number Theory 180, 544–565 (2017)

    Article  MathSciNet  Google Scholar 

  25. Sun, Z.-W.: Combinatorial identities in dual sequences. Eur. J. Combin. 24(6), 709–718 (2003)

    Article  MathSciNet  Google Scholar 

  26. Xu, C.: Explicit relations between multiple zeta values and related variants. Adv. Appl. Math. 130, 102245 (2021)

  27. Young, P.T.: Rational series for multiple zeta and log gamma functions. J. Number Theory 133(12), 3995–4009 (2013)

    Article  MathSciNet  Google Scholar 

  28. Young, P.T.: Symmetries of Bernoulli polynomial series and Arakawa–Kaneko zeta functions. J. Number Theory 143, 142–161 (2014)

    Article  MathSciNet  Google Scholar 

  29. Zhao, J.: Multiple Zeta Functions, Multiple Polylogarithms, and Their Special Values. Series on Number Theory and its Applications, vol. 12. World Scientific, Hackensack (2016)

  30. Zhao, J.: Analytic continuation of multiple zeta functions. Proc. Amer. Math. Soc. 128(5), 1275–1283 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the reviewers of this manuscript for their helpful comments, and Marc-Antoine Coppo for helpful conversations. All numerical computation was done using the PARI-GP calculator created by C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Thomas Young.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, P.T. Global series for height 1 multiple zeta functions. European Journal of Mathematics 9, 99 (2023). https://doi.org/10.1007/s40879-023-00695-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40879-023-00695-0

Keywords

Mathematics Subject Classification

Navigation