Skip to main content
Log in

On variants of the Halton sequence

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

A generalisation of the classical Halton sequence \((\phi _{\beta }(n))_{n\in \mathbb {N}}\) has emerged in recent years based on \(\beta \)-adic expansions of elements of [0, 1). In the case where \(\beta \) is a natural number greater than 1, this reduces to the classical Halton sequence. In this paper, we use ergodic and analytic methods to prove the uniform distribution of a sequence \((\phi _{\beta }(k_j))_{j\in \mathbb {N}}\) for the sequence of integers \((k_j)_{j\ge 0}\), which is both Hartman uniformly distributed and good universal. This builds on earlier work of M. Hofer, M. R. Iaco and R. Tichy in the special case \(k_j =j \ (j=0,1, \ldots )\). Variants of this phenomenon are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T.M. : Introduction to analytic number theory. In: Undergraduate Texts in Mathematics. Springer, New York (1976)

  2. Bellow, A., Losert, V.: On sequences of zero density in ergodic theory. In: Conference in Modern Analysis and Probability (New Haven, Conn. 1982), 49–60, Contemp. Math., vol. 26. Amer. Math. Soc., Providence (1984)

  3. Boshernitzan, M., Kolesnik, G., Quas, A., Wierdl, M.: Ergodic averaging sequences. J. Anal. Math. 95, 63–103 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: On the maximal ergodic theorem for certain subsets of the integers. Isr. J. Math. 61(1), 39–72 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belley, J.M., Morales, P.: Corrigendum and addendum to: “A generalization of Wiener’s criteria for the continuity of a Borel measure” [Studia Math. 72 (1982), no. 1, 2736]. Stud. Math. 80(1), 43–46 (1984)

  6. Davenport, H.: Multiplicative number theory. Third edition. Revised and with a preface by Hugh L. Montgomery. In: Graduate Texts in Mathematics, vol. 74, pp. xiv+177. Springer, New York (2000)

  7. Drmota, M., Tichy R.F.: Sequences, Discrepancies and Applications 19, vol. 45, pp. 281–299. Springer, New York (1983)

  8. Grabner, P.J., Hellekalek, P., Liardet, P.: The dynamical point of view of low discrepancy sequences. Unif. Distrib. Theory 7(1), 11–70 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Grabner, P.J., Liardet, P., Tichy, R.: Odometers and systems of numeration. Acta Arith. 70, 103–123 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Grabner, P.J., Tichy, R.: Contributions to digit expansions with respect to linear recurring sequences. J. Number Theory 36, 160–169 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grabner, P.J., Tichy, R.: \(\alpha \)-expansions, linear recurrences and the sum-of-digits function. Manuscr. Math. 70, 311–324 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluation multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hewitt, E., Ross, K.A.: Abstract Harmonic analysis. Grundlehren der Mathematishchen Wissenschaftenenm, vol. 115, 2nd edn. Springer, New York (1979)

  14. Hofer, M., Iacò, M.R., Tichy, T.: Ergodic properties of \(\beta \)-adic Halton sequences. Ergod. Theory Dyn. Syst. 35, 895–909 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hančl, J., Jaššová, A., Lertchoosakul, P., Nair, R.: On the metric theory of p-adic continued fractions. Indag. Math. (N.S.) 24(1), 42–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katznelson, Y.: An Introduction to Harmonic Analysis’. Dover, NY (1976)

    MATH  Google Scholar 

  17. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)

    MATH  Google Scholar 

  18. Lertchoosakul, P., Nair, R.: Distribution functions for subsequences of the van der Corput sequence. Indag. Math. (N.S.) 24(3), 593–601 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nair, R.: On asymptotic distribution of the a-adic integers. Proc. Indian Acad. Sci. Math. Sci. 107(4), 363–376 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nair, R.: On uniformly distributed sequences of integers and Poin-caré recurrence II. Indag. Math. N. S. 9(3), 405–415 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nair, R.: On polynomial ergodic averages and square functions. In: Number Theory and Polynomials, 241–254, London Math. Soc. Lecture Note Ser., vol. 352, Cambridge Univ. Press, Cambridge (2008)

  22. Nair, R., Weber, M.: On random perturbation of some intersective set. Indag. Math. N.S. 15(3), 37–381 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ninomiya, S.: Construction a new class of low-discrepancy sequences by using the \(\beta \)-adic transformation. Math. Comput. Simul. 47(2), 403–418 (1998)

    Article  MathSciNet  Google Scholar 

  24. Oxtoby, J.C.: Ergodic sets. Bull. Am. Math. Soc. 58, 116–136 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  25. Parry, W.: On \(\beta \)-expansions of real numbers. Acta Math. Acad. Sci. Hung. 11, 401–416 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tempelman, A.: Ergodic Theorems for Group Actions. Kluwer Academic Publication, Dordrecht (2010)

    Google Scholar 

  27. Urban, R., Zienkiewicz, J.: Weak type (1,1) estimates for a class of discrete rough maximal functions. Math. Res. Lett. 14(2), 227–237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vaughan, R.C.: The Hardy–Littlewood method. In: Cambridge Tracts in Mathematics, vol. 125, 2nd edn, pp. xiv+232. Cambridge University Press, Cambridge (1997). ISBN: 0-521-57347-5

Download references

Acknowledgments

We thank the referee for his very detailed comments that substantially improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhakrishnan Nair.

Additional information

Communicated by J. Schoißengeier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jassova, A., Lertchoosakul, P. & Nair, R. On variants of the Halton sequence. Monatsh Math 180, 743–764 (2016). https://doi.org/10.1007/s00605-015-0794-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0794-8

Keywords

Mathematics Subject Classification

Navigation