Skip to main content

Discrepancy Bounds for \(\boldsymbol{\beta }\) -adic Halton Sequences

  • Chapter
  • First Online:
Number Theory – Diophantine Problems, Uniform Distribution and Applications

Abstract

Van der Corput and Halton sequences are well-known low-discrepancy sequences. Almost 20 years ago Ninomiya defined analogues of van der Corput sequences for β-numeration and proved that they also form low-discrepancy sequences if β is a Pisot number. Only very recently Robert Tichy and his co-authors succeeded in proving that \(\boldsymbol{\beta }\)-adic Halton sequences are equidistributed for certain parameters \(\boldsymbol{\beta }= (\beta _{1},\ldots,\beta _{s})\) using methods from ergodic theory. In the present paper we continue this research and give discrepancy estimates for \(\boldsymbol{\beta }\)-adic Halton sequences for which the components β i are m-bonacci numbers. Our methods are quite different and use dynamical and geometric properties of Rauzy fractals that allow to relate \(\boldsymbol{\beta }\)-adic Halton sequences to rotations on high dimensional tori. The discrepancies of these rotations can then be estimated by classical methods relying on W.M. Schmidt’s Subspace Theorem.

Dedicated to Professor Robert F. Tichy on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Akiyama, On the boundary of self affine tilings generated by Pisot numbers. J. Math. Soc. Jpn. 54(2), 283–308 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Akiyama, Pisot number system and its dual tiling, in Physics and Theoretical Computer Science. NATO Science for Peace and Security Series D: Information and Communication Security, vol. 7 (IOS, Amsterdam, 2007), pp. 133–154

    Google Scholar 

  3. S. Akiyama, G. Barat, V. Berthé, A. Siegel, Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions. Monatsh. Math. 155(3–4), 377–419 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Akiyama, C. Frougny, J. Sakarovitch, Powers of rationals modulo 1 and rational base number systems. Isr. J. Math. 168, 53–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee, A. Siegel, On the Pisot substitution conjecture, in Mathematics of Aperiodic Order. Progress in Mathematics, vol. 309 (Birkhäuser/Springer, Basel, 2015), pp. 33–72

    Google Scholar 

  6. P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin, 8(2), 181–207 (2001); Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000)

    Google Scholar 

  7. G. Barat, P.J. Grabner, Distribution properties of G-additive functions. J. Number Theory 60(1), 103–123 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Berthé, A. Siegel, Tilings associated with beta-numeration and substitutions. Integers 5(3), 1–46 (2005), #A02

    Google Scholar 

  9. V. Berthé, A. Siegel, J. Thuswaldner, Substitutions, Rauzy fractals and tilings, in Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135 (Cambridge University Press, Cambridge, 2010), pp. 248–323

    Google Scholar 

  10. V. Berthé, W. Steiner, J.M. Thuswaldner, Geometry, dynamics and arithmetic of S-adic shifts (preprint, 2016)

    Google Scholar 

  11. V. Canterini, A. Siegel, Automate des préfixes-suffixes associé à une substitution primitive. J. Théor. Nombres Bordeaux 13(2), 353–369 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Carbone, Discrepancy of LS-sequences of partitions and points. Ann. Mat. Pura Appl. (4) 191(4), 819–844 (2012)

    Google Scholar 

  13. M. Drmota, The discrepancy of generalized van-der-Corput–Halton sequences. Ind. Math. 26(5), 748–759 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Drmota, R.F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Mathematics, vol. 1651 (Springer, Berlin, 1997)

    Google Scholar 

  15. J.-M. Dumont, A. Thomas, Systemes de numeration et fonctions fractales relatifs aux substitutions. Theor. Comput. Sci. 65(2), 153–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.-M. Dumont, A. Thomas, Digital sum moments and substitutions. Acta Arith. 64(3), 205–225 (1993)

    MathSciNet  MATH  Google Scholar 

  17. K.J. Falconer, Fractal Geometry (Wiley, Chichester, 1990)

    MATH  Google Scholar 

  18. H. Faure, C. Lemieux, Improved Halton sequences and discrepancy bounds. Monte Carlo Methods Appl. 16(3–4), 231–250 (2010)

    MathSciNet  MATH  Google Scholar 

  19. H. Faure, P. Kritzer, F. Pillichshammer, From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules. Ind. Math. 26(5), 760–822 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. D.-J. Feng, M. Furukado, S. Ito, J. Wu, Pisot substitutions and the Hausdorff dimension of boundaries of atomic surfaces. Tsukuba J. Math. 30(1), 195–223 (2006)

    MathSciNet  MATH  Google Scholar 

  21. T. Fujita, S. Ito, S. Ninomiya, The generalized van der Corput sequence and its application to numerical integration. Sūrikaisekikenkyūsho Kōkyūroku 1240, 114–124 (2001); 5th Workshop on Stochastic Numerics (Japanese) (Kyoto, 2001)

    Google Scholar 

  22. P.J. Grabner, R.F. Tichy, Contributions to digit expansions with respect to linear recurrences. J. Number Theory 36(2), 160–169 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Haynes, Equivalence classes of codimension-one cut-and-project nets. Ergodic Theory Dyn. Syst. 36(3), 816–831 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Hofer, Halton-type sequences to rational bases in the ring of rational integers and in the ring of polynomials over a finite field. Math. Comput. Simul. (to appear)

    Google Scholar 

  26. R. Hofer, P. Kritzer, G. Larcher, F. Pillichshammer, Distribution properties of generalized van der Corput-Halton sequences and their subsequences. Int. J. Number Theory 5(4), 719–746 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Hofer, M.R. Iacò, R. Tichy, Ergodic properties of β-adic Halton sequences. Ergodic Theory Dyn. Syst. 35(3), 895–909 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Ito, M. Kimura, On Rauzy fractal. Jpn. J. Ind. Appl. Math. 8(3), 461–486 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Ito, H. Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case. Isr. J. Math. 153, 129–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Jassova, P. Lertchoosakul, R. Nair, On variants of the Halton sequence. Monatsh. Math. 180, 743–764 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences (Wiley-Interscience [Wiley], New York/London/Sydney, 1974); Pure and Applied Mathematics

    Google Scholar 

  32. P. Lecomte, M. Rigo, Numeration systems on a regular language. Theory Comput. Syst. 34(1), 27–44 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Lecomte, M. Rigo, On the representation of real numbers using regular languages. Theory Comput. Syst. 35(1), 13–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. R.D. Mauldin, S.C. Williams, Hausdorff dimension in graph directed constructions. Trans. Am. Math. Soc. 309(2), 811–829 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Minervino, W. Steiner, Tilings for Pisot beta numeration. Ind. Math. 25(4), 745–773 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Minervino, J. Thuswaldner, The geometry of non-unit Pisot substitutions. Ann. Inst. Fourier (Grenoble) 64(4), 1373–1417 (2014)

    Google Scholar 

  37. L.J. Mordell, On the linear independence of algebraic numbers. Pac. J. Math. 3, 625–630 (1953)

    Article  MATH  Google Scholar 

  38. M. Mori, M. Mori, Dynamical system generated by algebraic method and low discrepancy sequences. Monte Carlo Methods Appl. 18(4), 327–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Niederreiter, Application of Diophantine approximations to numerical integration, in Diophantine Approximation and Its Applications (Proceedings of a Conference, Washington, DC, 1972) (Academic, New York, 1973), pp. 129–199

    Google Scholar 

  40. H. Niederreiter, A discrepancy bound for hybrid sequences involving digital explicit inversive pseudorandom numbers. Unif. Distrib. Theory 5(1), 53–63 (2010)

    MathSciNet  MATH  Google Scholar 

  41. S. Ninomiya, Constructing a new class of low-discrepancy sequences by using the β-adic transformation. Math. Comput. Simul. 47(2–5), 403–418 (1998); IMACS Seminar on Monte Carlo Methods (Brussels, 1997)

    Google Scholar 

  42. W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11, 401–416 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Pethő, R.F. Tichy, On digit expansions with respect to linear recurrences. J. Number Theory 33(2), 243–256 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France 110(2), 147–178 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8, 477–493 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Rigo, W. Steiner, Abstract β-expansions and ultimately periodic representations. J. Théor. Nombres Bordeaux 17(1), 283–299 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. H.P. Schlickewei, The \(\mathfrak{p}\)-adic Thue-Siegel-Roth-Schmidt theorem. Arch. Math. (Basel) 29(3), 267–270 (1977)

    Google Scholar 

  48. W.M. Schmidt, Simultaneous approximation to algebraic numbers by rationals. Acta Math. 125, 189–201 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Siegel, Représentation des systèmes dynamiques substitutifs non unimodulaires. Ergodic Theory Dyn. Syst. 23(4), 1247–1273 (2003)

    Article  MATH  Google Scholar 

  50. A. Siegel, J.M. Thuswaldner, Topological properties of Rauzy fractals. Mém. Soc. Math. Fr. (N.S.) 118, 1–144 (2009)

    Google Scholar 

  51. V.F. Sirvent, Y. Wang, Self-affine tiling via substitution dynamical systems and Rauzy fractals. Pac. J. Math. 206(2), 465–485 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  52. W. Steiner, Regularities of the distribution of β-adic van der Corput sequences. Monatsh. Math. 149(1), 67–81 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. W. Steiner, Regularities of the distribution of abstract van der Corput sequences. Unif. Distrib. Theory 4(2), 81–100 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Supported by projects I1136 and P27050 granted by the Austrian Science Fund (FWF)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg M. Thuswaldner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thuswaldner, J.M. (2017). Discrepancy Bounds for \(\boldsymbol{\beta }\) -adic Halton Sequences. In: Elsholtz, C., Grabner, P. (eds) Number Theory – Diophantine Problems, Uniform Distribution and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-55357-3_22

Download citation

Publish with us

Policies and ethics