Skip to main content
Log in

On a Chen–Fliess approximation for diffusion functionals

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We show that the so-called functional derivatives, as recently introduced by Dupire (Functional Ito calculus, SSRN, 2010), can provide intuitive meaning to classic expansions of path dependent functionals that appear in control theory (work of Brockett, Fliess, Sussmann et. al). We then focus on stochastic differential equations and show that vector fields can be lifted to act as derivations on such functionals. This allows to revisit and generalize the classic stochastic Taylor expansion to arrive at a Chen–Fliess approximation for smooth, path dependent functionals of SDEs with a corresponding \(L^{2}\)-error estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. T. Lyons personal communication (cf. thesis of T. Fawcett [14] and the transfer report of A. Janssen).

  2. \(\rho _{\infty }\left( \left( t,x\right) ,\left( t,y\right) \right) =0\) iff \(x=y\) on \(\left[ 0,t\right] \); we call a progressively measurable \(F\) continuous at \(\left( t,x\right) \) wrt \(\rho _{\infty }\) if \(\forall \epsilon \exists \delta \) s.t \(\rho \left( \left( t,x\right) ,\left( s,y\right) \right) <\delta \) implies \(\left| F\left( t,x\right) -F\left( s,y\right) \right| <\epsilon \), cf. [11].

  3. \(\delta _{i,j}\) is the usual Kronecker delta, \(\delta _{ij}=1\) if \(i=j,\) otherwise equal \(0\).

  4. in the summation index that appears for the remainder term \(R_{st}^{m}\) we use the convention that \(\left( i_{2},\ldots ,i_{N}\right) =\emptyset \) if \(N=1\).

References

  1. Azencott, R.: Formule de Taylor stochastique et développement asymptotique d’intégrales de Feynman. In: Seminar on Probability, XVI, Supplement. Berlin: Springer, pp. 237–285 (1982)

  2. Baudoin, F.: An introduction to the geometry of stochastic flows. London: Imperial College Press, pp. x+140. ISBN: 1-86094-481-7. (2004)

  3. Ben Arous, G.: Flots et séries de Taylor stochastiques. In: Probab. Theory Related Fields 81.1, pp. 29–77. ISSN: 0178–8051. (1989)

  4. Brockett, R. W.: Volterra series and geometric control theory. In: Automatica 12.2, pp. 167–176. ISSN: 0005–1098. doi:10.1016/0005-1098(76)90080-7. URL: http://www.sciencedirect.com/science/article/pii/0005109876900807 (1976)

  5. Castell, F.: Asymptotic expansion of stochastic flows. Probab. Theory Relat. Fields 96 (2), pp. 225–239. ISSN: 0178–8051. (1993)

  6. Castell, F., Gaines, J.: An efficient approximation method for stochastic differential equations by means of the exponential Lie series. Math. Comput. Simul. 38. pp. 1–3 (1995). Probabilités numériques (Paris, 1992), pp. 13–19. ISSN: 0378–4754

  7. Castell, F., Gaines, J.: The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations. Ann. Inst. H. Poincaré Probab. Statist. 32 (2), pp. 231–250. ISSN: 0246–0203 (1996)

  8. Chen, K.-T.: Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. of Math. (2) 65, 163–178 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, K.-T.: Integration of paths-a faithful representation of paths by non-commutative formal power series. Trans. Amer. Math. Soc. 89, 395–407 (1958)

    MathSciNet  Google Scholar 

  10. Cont, R., Fournie, D.: Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal. 259, 1043–1072 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cont, R., Fournié, D.-A.: Functional Itô calculus and stochastic integral representation of martingales. Annal. Prob. 41(1), 109–133 (2013)

    Article  MATH  Google Scholar 

  12. Dupire, B.: Functional Ito calculus. In: SSRN (2010)

  13. Ekren, I., Keller, C., Touzi, N., Zhang, J.: On viscosity solutions of path dependent PDEs. Annal. Prob. 42(1), 204–236 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fawcett, T.: Problems in stochastic analysis: connections between rough paths and non-commutative harmonic analysis. PhD thesis. University of Oxford (2003)

  15. Fliess, M.: Fonctionnelles causales non linéaires et indéterminées non commutatives. Bull. Soc. Math. 109(1), 3–40 (1981)

    MathSciNet  MATH  Google Scholar 

  16. Friz, P.K., Victoir, N.B.: Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  17. Gaines, J.G., Lyons, T.: Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57 (5), pp. 1455–1484. ISSN: 0036–1399. (1997)

  18. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev 43(3), 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, Y.Z.: Série de Taylor stochastique et formule de Campbell-Hausdorff, d’aprés Ben Arous. In: Séminaire de Probabilités, XXVI. Vol. 1526. Lecture Notes in Math. Berlin: Springer, pp. 579–586. (1992)

  20. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Berlin: Springer-Verlag, pp. xxxvi+632. ISBN: 3-540-54062-8. (1992)

  21. Lyons, T., Victoir, N.: Cubature on Wiener space. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 460.2041, pp. 169–198. (2004)

  22. Lyons, T., Victoir, N.: Cubature on Wiener space. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2041), pp. 169–198. ISSN: 1364–5021 (2004)

  23. Oberhauser, H.: The functional Ito-formula under a family of non-dominated measures (2012). arXiv:1212.1414

  24. Peng, S.: Note on Viscosity Solution of path dependent PDE and G-Martingales. ArXiv e-prints. eprint: 1106.1144 (math.PR). (2011)

  25. Peng, S., Wang, F.: BSDE, Path-dependent PDE and Nonlinear Feynman-Kac Formula. In: ArXiv e-prints (2011). arXiv:1108.4317 [math.PR]

  26. Platen, E.: An introduction to numerical methods for stochastic differential equations. Acta numerica 8, 197–246 (1999)

    Article  MathSciNet  Google Scholar 

  27. Reutenauer, C.: Free Lie algebras. Oxford Science Publications. New York: The Clarendon Press Oxford University Press, pp. xviii+269. ISBN: 0-19-853679-8 (1993)

  28. Strichartz, R.S.: The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations. J. Funct. Anal. 72 (2), pp. 320–345. ISSN: 0022–1236 (1987)

  29. Stroock, D.W.: Homogeneous chaos revisited. Seminaire de probabilites (Strasbourg) 21, 1–7 (1987)

    MathSciNet  Google Scholar 

  30. Sussmann, H.: Semigroup representations, bilinear approximation of input-output maps, and generalized inputs. Math. Syst. Theory 131 (1975)

Download references

Acknowledgments

The research of Christian Litterer and Harald Oberhauser was supported by the European Unions Seventh Framework Programme, ERC grant agreement 258237. The research of Christian Litterer was also supported by ERC grant 321111 RoFiRM, the research of Harald Oberhauser was also supported by ERC grant 291244 Esig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Oberhauser.

Additional information

Communicated by P. Friz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litterer, C., Oberhauser, H. On a Chen–Fliess approximation for diffusion functionals. Monatsh Math 175, 577–593 (2014). https://doi.org/10.1007/s00605-014-0677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0677-4

Keywords

Mathematics Subject Classification

Navigation