Skip to main content
Log in

Maximal \(L_{p}\)-regularity of non-local boundary value problems

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We investigate the \(\fancyscript{R}\)-boundedness of operator families belonging to the Boutet de Monvel calculus. In particular, we show that weakly and strongly parameter-dependent Green operators of nonpositive order are \(\fancyscript{R}\)-bounded. Such operators appear as resolvents of non-local (pseudodifferential) boundary value problems. As a consequence, we obtain maximal \(L_p\)-regularity for such boundary value problems. An example is given by the reduced Stokes equation in waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For a definition of \(B\)-convexity we refer the reader to [16]. For us it will be sufficient to know that \(L_p\)-spaces with \(1<p<\infty \) are \(B\)-convex.

  2. For the definition of these properties we refer the reader to [17] or [5]. For us it is sufficient to know that scalar-valued \(L_p\)-spaces, \(1<p<\infty \), have these properties.

  3. This principle states that the inequality

    $$\begin{aligned} \sum _{z_1,\ldots ,z_N=\pm 1}\left\| \sum _{j=1}^N z_j\alpha _jx_j\right\| ^q\le 2^q \sum _{z_1,\ldots ,z_N=\pm 1}\left\| \sum _{j=1}^N z_j\beta _jx_j\right\| ^q\qquad \qquad \end{aligned}$$

    holds true whenever \(\alpha _j,\beta _j\in {\mathbb C}\) with \(|\alpha _j|\le |\beta _j|\) and \(x_1,\ldots ,x_N\in X\) with arbitrary \(N\).

  4. The operator class on \(M\) instead of the half-space is again obtained by using a covering by local coordinate systems and a subordinate partition of unity and taking into account the global smoothing remainders defined in Definition 3.

References

  1. Abels, H.: Bounded imaginary powers and \(H_\infty \)-calculus of the Stokes operator in unbounded domains. In: Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., vol. 64, pp. 1–15. Birkhäuser, Basel (2005). doi:10.1007/3-7643-7385-71

  2. Amann, H.: Quasilinear parabolic problems via maximal regularity. Adv. Differ. Equ. 10(10), 1081–1110 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Boutet de Monvel, L.: Boundary problems for pseudo-differential operators. Acta Math. 126(1–2), 11–51 (1971)

  4. Coriasco, S., Schrohe, E., Seiler, J.: Bounded \(H_\infty \)-calculus for differential operators on conic manifolds with boundary. Commun. Partial Differ. Equ. 32(1–3), 229–255 (2007). doi:10.1080/03605300600910290

  5. Denk, R., Hieber, M., Prüss, J.: \(\fancyscript {R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), viii+114 (2003). doi:10.1090/memo/0788

  6. Denk, R., Krainer, T.: \(\fancyscript {R}\)-boundedness, pseudodifferential operators, and maximal regularity for some classes of partial differential operators. Manuscr. Math. 124(3), 319–342 (2007). doi:10.1007/s00229-007-0131-1

  7. Duong, X.T.: \(H_\infty \) functional calculus of elliptic operators with \(C^\infty \) coefficients on \(L^p\) spaces of smooth domains. J. Austral. Math. Soc. Ser. A 48(1), 113–123 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Escher, J., Prüss, J., Simonett, G.: Analytic solutions for a Stefan problem with Gibbs-Thomson correction. J. Reine Angew. Math. 563, 1–52 (2003). doi:10.1515/crll.2003.082

  9. Farwig, R.: Weighted \(L^q\)-Helmholtz decompositions in infinite cylinders and in infinite layers. Adv. Differ. Equ. 8(3), 357–384 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Farwig, R., Ri, M.-H.: Resolvent estimates and maximal regularity in weighted \(L^q\)-spaces of the Stokes operator in an infinite cylinder. J. Math. Fluid Mech. 10(3), 352–387 (2008). doi:10.1007/s00021-006-0235-5

  11. Girardi, M., Weis, L.: Criteria for R-boundedness of operator families. In: Evolution Equations, Lecture Notes in Pure and Appl. Math., vol. 234, pp. 203–221. Dekker, New York (2003)

  12. Grubb, G.: Functional Calculus of Pseudodifferential Boundary Problems, Progress in Mathematics, vol. 65. Birkhäuser Boston Inc., Boston, MA (1986)

    Book  Google Scholar 

  13. Grubb, G.: Nonhomogeneous time-dependent Navier–Stokes problems in \(L_p\) Sobolev spaces. Differ. Integr. Equ. 8(5), 1013–1046 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Grubb, G., Kokholm, N.J.: A global calculus of parameter-dependent pseudodifferential boundary problems in \(L_p\) Sobolev spaces. Acta Math. 171(2), 165–229 (1993). doi:10.1007/BF02392532

  15. Grubb, G., Solonnikov, V.A.: Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69(2), 217–290 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Kalton, N., Kunstmann, P., Weis, L.: Perturbation and interpolation theorems for the \(H^\infty \)-calculus with applications to differential operators. Math. Ann. 336(4), 747–801 (2006). doi:10.1007/s00208-005-0742-3

  17. Kunstmann, P.C., Weis, L.: Maximal \(L_p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus. In: Functional Analytic Methods for Evolution Equations, Lecture Notes in Math., vol. 1855, pp. 65–311. Springer, Berlin (2004). doi:10.1007/978-3-540-44653-82

  18. Portal, P., Štrkalj, Ž.: Pseudodifferential operators on Bochner spaces and an application. Math. Z. 253(4), 805–819 (2006). doi:10.1007/s00209-006-0934-x

  19. Schrohe, E.: A short introduction to Boutet de Monvel’s calculus. In: Approaches to Singular Analysis (Berlin, 1999), Oper. Theory Adv. Appl., vol. 125, pp. 85–116. Birkhäuser, Basel (2001)

  20. Schrohe, E., Schulze, B.W.: Boundary value problems in Boutet de Monvel’s algebra for manifolds with conical singularities. I. In: Pseudo-differential Calculus and Mathematical Physics, Math. Top., vol. 5, pp. 97–209. Akademie Verlag, Berlin (1994)

  21. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  22. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319(4), 735–758 (2001). doi:10.1007/PL00004457

Download references

Acknowledgments

We thank the anonymous referees for their useful comments and one of them for pointing out a gap in the argumentation of Sect. 5.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Seiler.

Additional information

Communicated by J. Escher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denk, R., Seiler, J. Maximal \(L_{p}\)-regularity of non-local boundary value problems. Monatsh Math 176, 53–80 (2015). https://doi.org/10.1007/s00605-014-0669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0669-4

Keywords

Mathematics Subject Classification

Navigation