Skip to main content
Log in

Algebras of symbols associated with the Weyl calculus for Lie group representations

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We develop our earlier approach to the Weyl calculus for representations of infinite-dimensional Lie groups by establishing continuity properties of the Moyal product for symbols belonging to various modulation spaces. For instance, we prove that the modulation space of symbols M ∞,1 is an associative Banach algebra and the corresponding operators are bounded. We then apply the abstract results to two classes of representations, namely the unitary irreducible representations of nilpotent Lie groups, and the natural representations of the semidirect product groups that govern the magnetic Weyl calculus. The classical Weyl–Hörmander calculus is obtained for the Schrödinger representations of the finite-dimensional Heisenberg groups, and in this case we recover the results obtained by J. Sjöstrand (Math Res Lett 1(2):185–192, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beltiţă I., Beltiţă D.: Magnetic pseudo-differential Weyl calculus on nilpotent Lie groups. Ann. Glob. Anal. Geom. 36(3), 293–322 (2009)

    Article  MATH  Google Scholar 

  2. Beltiţă I., Beltiţă D.: Uncertainty principles for magnetic structures on certain coadjoint orbits. J. Geom. Phys. 60(1), 81–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beltiţă I., Beltiţă D.: Modulation spaces of symbols for representations of nilpotent Lie groups. J. Fourier Anal. Appl. 17(2), 290–319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beltiţă I., Beltiţă D.: Continuity of magnetic Weyl calculus. J. Funct. Anal. 260(7), 1944–1968 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benedek A., Panzone R.: The space L p, with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. In: Proceedings of “International Conference on Wavelets and Applications” 2002. Updated version of a technical report, University of Vienna, pp. 99–140. Allied Publishers,Chennai, Chennai, India, 2003 (1983)

  7. Gröchenig K.: Foundations of Time–Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston (2001)

    Google Scholar 

  8. Gröchenig K.: Time–frequency analysis of Sjöstrand’s class. Rev. Mat. Iberoam. 22(2), 703–724 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Holst A., Toft J., Wahlberg P.: Weyl product algebras and modulation spaces. Funct. Anal. 251(2), 463–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iftimie V., Măntoiu M., Purice R.: Magnetic pseudodifferential operators. Publ. Res. Inst. Math. Sci. 43(3), 585–623 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iftimie V., Măntoiu M., Purice R.: Commutator criteria for magnetic pseudodifferential operators. Comm. Partial Differ. Equ. 35(6), 1058–1094 (2010)

    Article  MATH  Google Scholar 

  12. Kirillov, A. A.: Unitary representations of nilpotent Lie groups. Uspehi Mat. Nauk. 17(4), 57–110 (1962) (Russian)

    MathSciNet  Google Scholar 

  13. Kurbatov V. G.: Functional–Differential Operators and Equations. Mathematics and its Applications 473. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  14. Kurbatov V. G.: Some algebras of operators majorized by a convolution. Funct. Differ. Equ. 8(3–4), 323–333 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Maillard J.-M.: Explicit star products on orbits of nilpotent Lie groups with square integrable representations. J. Math. Phys. 48(7), 073504 (2007)

    Article  MathSciNet  Google Scholar 

  16. Măntoiu M., Purice R.: The magnetic Weyl calculus. J. Math. Phys. 45(4), 1394–1417 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Măntoiu M., Purice R.: The modulation mapping for magnetic symbols and operators. Proc. Am. Math. Soc. 138(8), 2839–2852 (2010)

    Article  MATH  Google Scholar 

  18. Neeb K.-H.: Towards a Lie theory of locally convex groups. Jpn J. Math. 1(2), 291–468 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pedersen N. V.: Geometric quantization and the universal enveloping algebra of a nilpotent Lie group. Trans. Am. Math. Soc. 315(2), 511–563 (1989)

    Article  MATH  Google Scholar 

  20. Pedersen N.V.: Matrix coefficients and a Weyl correspondence for nilpotent Lie groups. Invent. Math. 118(1), 1–36 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sjöstrand J.: An algebra of pseudodifferential operators. Math. Res. Lett. 1(2), 185–192 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Sjöstrand, J.: Wiener type algebras of pseudodifferential operators. In: Séminaire sur les Équations aux Dérivées Partielles, 1994–1995, Exp. No. IV, pp. 21, École Polytech., Palaiseau (1995)

  23. Toft J.: Subalgebras to a Wiener type algebra of pseudo-differential operators. Ann. Inst. Fourier (Grenoble) 51(5), 1347–1383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Beltiţă.

Additional information

Communicated by K. Gröchenig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltiţă, I., Beltiţă, D. Algebras of symbols associated with the Weyl calculus for Lie group representations. Monatsh Math 167, 13–33 (2012). https://doi.org/10.1007/s00605-011-0329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-011-0329-x

Keywords

Mathematics Subject Classification (2000)

Navigation