Skip to main content
Log in

Nucleic acid aptamer-based electrochemical sensor for the detection of serum P-tau231 and the instant screening test of Alzheimer’s disease

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The instant screening of patients with a tendency towards developing Alzheimer’s disease (AD) is significant for providing preventive measures and treatment. However, the current imaging-based technology cannot meet the requirements in the early stage. Developing biosensor-based liquid biopsy technology could be overcoming this bottleneck problem. Herein, we developed a simple, low-cost, and sensitive electrochemical aptamer biosensor for detecting phosphorylated tau protein threonine 231 (P-tau231), the earliest and one of the most efficacious abnormally elevated biomarkers of AD. Gold nanoparticles (AuNPs) were electrochemically synthesized on a glassy carbon electrode as the transducer, exhibiting excellent conductivity, and were applied to amplify the electrochemical signal. A nucleic acid aptamer was designed as the receptor to capture the P-tau231 protein, specifically through the formation of an aptamer-antigen complex. The proposed biosensor showed excellent sensitivity in detecting P-tau 231, with a broad linear detection range from 10 to 107 pg/mL and a limit of detection (LOD) of 2.31 pg/mL. The recoveries of the biosensor in human serum ranged from 97.59 to 103.26%, demonstrating that the biosensor could be used in complex practical samples. In addition, the results showed that the developed biosensor has good repeatability, reproducibility, and stability, which provides a novel method for the early screening of AD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data in our study are available from the corresponding author upon reasonable request.

Abbreviations

AD :

Alzheimer’s disease

P-tau231 :

Phosphorylated tau protein threonine 231

LOD :

Limit of detection

P-tau181 :

Phosphorylated tau protein threonine 181

P-tau217 :

Phosphorylated tau protein threonine 217

CSF :

Cerebrospinal fluid

:

β-Amyloid

PET-CT :

Positron Emission Tomography-Computed Tomography

MCH :

6-Mercapto-1-hexanol

BSA :

Bovine serum albumin

GCE :

Glassy carbon electrode

SEM :

Scanning electron microscopy

EDS :

Energy-dispersive X-ray spectroscopy

CV :

Cyclic voltammetry

DPV :

Differential pulse voltammetry

EIS :

Electrochemical impedance spectroscopy

PBS :

Phosphate-buffered saline

CA19-9 :

Cancer antigen 19–9

RSD :

Relative standard deviation

References 

  1. Scheltens P, De Strooper B, Kivipelto M et al (2021) Alzheimer’s disease. The Lancet 397:1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

    Article  CAS  Google Scholar 

  2. Jia L, Du Y, Chu L et al (2020) Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health 5:e661–e671. https://doi.org/10.1016/S2468-2667(20)30185-7

    Article  PubMed  Google Scholar 

  3. Ren R, Qi J, Lin S et al (2022) The China Alzheimer Report 2022. Gen Psychiatry 35:e100751. https://doi.org/10.1136/gpsych-2022-100751

    Article  Google Scholar 

  4. (2023) 2023 Alzheimer’s disease facts and figures. Alzheimers Dement 19:1598–1695. https://doi.org/10.1002/alz.13016

  5. Venkatramani A, Panda D (2019) Regulation of neuronal microtubule dynamics by tau: implications for tauopathies. Int J Biol Macromol 133:473–483. https://doi.org/10.1016/j.ijbiomac.2019.04.120

    Article  CAS  PubMed  Google Scholar 

  6. Puzzo D, Privitera L, Leznik E et al (2008) Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28:14537–14545. https://doi.org/10.1523/JNEUROSCI.2692-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pluta R, Ouyang L, Januszewski S et al (2021) Participation of amyloid and tau protein in post-ischemic neurodegeneration of the hippocampus of a nature identical to Alzheimer’s disease. Int J Mol Sci 22:2460. https://doi.org/10.3390/ijms22052460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Therriault J, Vermeiren M, Servaes S et al (2023) Association of phosphorylated tau biomarkers with amyloid positron emission tomography vs tau positron emission tomography. JAMA Neurol 80:188. https://doi.org/10.1001/jamaneurol.2022.4485

    Article  PubMed  Google Scholar 

  9. Gonzalez MC, Ashton NJ, Gomes BF et al (2022) Association of plasma p-tau181 and p-tau231 concentrations with cognitive decline in patients with probable dementia with Lewy bodies. JAMA Neurol 79:32. https://doi.org/10.1001/jamaneurol.2021.4222

    Article  PubMed  Google Scholar 

  10. Suárez-Calvet M, Karikari TK, Ashton NJ et al (2020) Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Aβ pathology are detected. EMBO Mol Med 12:e12921. https://doi.org/10.15252/emmm.202012921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neddens J, Temmel M, Flunkert S et al (2018) Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol Commun 6:52. https://doi.org/10.1186/s40478-018-0557-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Handels RLH, Wolfs CAG, Aalten P et al (2014) Diagnosing Alzheimer’s disease: a systematic review of economic evaluations. Alzheimers Dement 10:225–237. https://doi.org/10.1016/j.jalz.2013.02.005

    Article  PubMed  Google Scholar 

  13. Chatterjee P, Pedrini S, Ashton NJ et al (2022) Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer’s disease. Alzheimers Dement 18:1141–1154. https://doi.org/10.1002/alz.12447

    Article  CAS  PubMed  Google Scholar 

  14. Ashton NJ, Janelidze S, Mattsson-Carlgren N et al (2022) Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nat Med 28:2555–2562. https://doi.org/10.1038/s41591-022-02074-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kiđemet-Piskač S, Babić Leko M, Blažeković A et al (2018) Evaluation of cerebrospinal fluid phosphorylated tau 231 as a biomarker in the differential diagnosis of Alzheimer’s disease and vascular dementia. CNS Neurosci Ther 24:734–740. https://doi.org/10.1111/cns.12814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ashton NJ, Puig‐Pijoan A, Milà‐Alomà M, et al (2022) Plasma and CSF biomarkers in a memory clinic: head‐to‐head comparison of phosphorylated tau immunoassays. Alzheimers Dement alz.12841. https://doi.org/10.1002/alz.12841

  17. Milà-Alomà M, Ashton NJ, Shekari M et al (2022) Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease. Nat Med. https://doi.org/10.1038/s41591-022-01925-w

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meyer P, Ashton NJ, Karikari TK et al (2022) Plasma p-tau231, p-tau181, PET biomarkers, and cognitive change in older adults. Ann Neurol 91:548–560. https://doi.org/10.1002/ana.26308

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Ortiz F, Kac PR, Brum WS et al (2023) Plasma phospho-tau in Alzheimer’s disease: towards diagnostic and therapeutic trial applications. Mol Neurodegener 18:18. https://doi.org/10.1186/s13024-023-00605-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen L, Niu X, Wang Y et al (2022) Plasma tau proteins for the diagnosis of mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Front Aging Neurosci 14:942629. https://doi.org/10.3389/fnagi.2022.942629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ashton NJ, Benedet AL, Pascoal TA et al (2022) Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in Alzheimer’s disease. BioMedicine 76:103836. https://doi.org/10.1016/j.ebiom.2022.103836

    Article  CAS  Google Scholar 

  22. Ashton NJ, Pascoal TA, Karikari TK et al (2021) Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol (Berl) 141:709–724. https://doi.org/10.1007/s00401-021-02275-6

    Article  CAS  PubMed  Google Scholar 

  23. Graff-Radford J, Yong KXX, Apostolova LG, et al (2021) New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol 20:222–234. https://doi.org/10.1016/S1474-4422(20)30440-3

  24. Kac PR, Gonzalez-Ortiz F, Simrén J et al (2022) Diagnostic value of serum versus plasma phospho-tau for Alzheimer’s disease. Alzheimers Res Ther 14:65. https://doi.org/10.1186/s13195-022-01011-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montoliu-Gaya L, Benedet AL, Tissot C et al (2023) Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies. Nat Aging 3:661–669. https://doi.org/10.1038/s43587-023-00405-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Soares JC, Soares AC, Rodrigues VC et al (2019) Detection of the prostate cancer biomarker PCA3 with electrochemical and impedance-based biosensors. ACS Appl Mater Interfaces 11:46645–46650. https://doi.org/10.1021/acsami.9b19180

    Article  CAS  PubMed  Google Scholar 

  27. Kinghorn A, Fraser L, Liang S et al (2017) Aptamer bioinformatics. Int J Mol Sci 18:2516. https://doi.org/10.3390/ijms18122516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2019) Nanoparticles for nucleic-acid-based biosensing: opportunities, challenges, and prospects. Anal Bioanal Chem 411:1791–1806. https://doi.org/10.1007/s00216-018-1273-6

    Article  CAS  PubMed  Google Scholar 

  29. Wehmeyer KR, White RJ, Kissinger PT, Heineman WR (2021) Electrochemical affinity assays/sensors: brief history and current status. Annu Rev Anal Chem 14:109–131. https://doi.org/10.1146/annurev-anchem-061417-125655

    Article  CAS  Google Scholar 

  30. Xu Y, Wang X, Ding C, Luo X (2021) Ratiometric antifouling electrochemical biosensors based on multifunctional peptides and MXene loaded with Au nanoparticles and methylene blue. ACS Appl Mater Interfaces 13:20388–20396. https://doi.org/10.1021/acsami.1c04933

    Article  CAS  PubMed  Google Scholar 

  31. Xiao T, Huang J, Wang D et al (2020) Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta 206:120210. https://doi.org/10.1016/j.talanta.2019.120210

    Article  CAS  PubMed  Google Scholar 

  32. Phan LMT, Cho S (2022) Fluorescent aptasensor and colorimetric aptablot for p-tau231 detection: toward early diagnosis of Alzheimer’s disease. Biomedicines 10:93. https://doi.org/10.3390/biomedicines10010093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teng I-T, Li X, Yadikar HA et al (2018) Identification and characterization of DNA aptamers specific for phosphorylation epitopes of tau protein. J Am Chem Soc 140:14314–14323. https://doi.org/10.1021/jacs.8b08645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang W, Liu Y, Shi T et al (2020) Biosynthesized quantum dot for facile and ultrasensitive electrochemical and electrochemiluminescence immunoassay. Anal Chem 92:1598–1604. https://doi.org/10.1021/acs.analchem.9b04919

    Article  CAS  PubMed  Google Scholar 

  35. Le HTN, Cho S (2021) Sensitive electrochemical detection of phosphorylated-tau threonine 231 in human serum using interdigitated wave-shaped electrode. Biomedicines 10:10. https://doi.org/10.3390/biomedicines10010010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thanked Biorender (https://www.biorender.com/) for their high-quality artwork. We thanked Grammarly (https://app.grammarly.com/) for correction of grammatical errors and improvements to readability.

Funding

The study was supported by the National Natural Science Foundation of China (82030065 to Prof. Qin Zhou, 82102502 to Prof. Feiyun Cui, and 82071833 to Prof. Qingfei Kong).

Author information

Authors and Affiliations

Authors

Contributions

Methodology: Qingfei Kong, Chunhan Liu, and Yanlin Zhang; writing—original draft preparation: Chunhan Liu; formal analysis and writing—review and editing: Yifan He and Ruiting Zhang; investigation: Yuhan Wang; conceptualization, funding acquisition, resources, and supervision: Feiyun Cui, Qin Zhou, and Qingfei Kong; all authors contributed to the article.

Corresponding authors

Correspondence to Qin Zhou or Feiyun Cui.

Ethics declarations

Consent for publication

All authors contributed to the article and approved the submitted version.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8667 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Q., Liu, C., Zhang, Y. et al. Nucleic acid aptamer-based electrochemical sensor for the detection of serum P-tau231 and the instant screening test of Alzheimer’s disease. Microchim Acta 191, 328 (2024). https://doi.org/10.1007/s00604-024-06395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06395-0

Keywords

Navigation