Skip to main content
Log in

Detection of alkaline phosphatase activity with a CsPbBr3/Y6 heterojunction-based photoelectrochemical sensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultra-sensitive photoelectrochemical (PEC) sensor based on perovskite composite was developed for the determination of alkaline phosphatase (ALP) in human serum. In contrast to CsPbBr3 or Y6 that generated anodic current, the heterojunction of CsPbBr3/Y6 promoted photocarriers to separate and generated cathodic photocurrent. Ascorbic acid (AA) was produced by ALP hydrolyzing L-ascorbic acid 2-phosphate trisodium salt (AAP), which can combine with the holes on the photoelectrode surface, accelerating the transmission of photogenerated carriers, leading to enhanced photocurrent intensity. Thus, the enhancement of PEC current was linked to ALP activity. The PEC sensor exhibits good sensitivity for detection of ALP owing to the unique photoelectric properties of the CsPbBr3/Y6 heterojunction. The detection limit of the sensor was 0.012 U·L−1 with a linear dynamic range of 0.02–2000 U·L−1. Therefore, this PEC sensing platform shows great potential for the development of different PEC sensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author [M Yang], upon reasonable request.

References

  1. Niu X, Ye X, Wang L, Lin Y, Du D (2019) A review on emerging principles and strategies for colorimetric and fluorescent detection of alkaline phosphatase activity. Anal Chim Acta 1086:29–45

    Article  CAS  PubMed  Google Scholar 

  2. Cannalire G, Pilloni S, Esposito S, Biasucci G, Di FA, Street ME (2023) Alkaline phosphatase in clinical practice in childhood: focus on rickets. Front Endocrinol 14:11145

    Article  Google Scholar 

  3. Riancho JA (2023) Diagnostic approach to patients with low serum alkaline phosphatase. Calcif Tissue Int 112(3):289–296

    Article  CAS  PubMed  Google Scholar 

  4. Karhade AV, Thio QCBS, Kuverji M, Ogink PT, Ferrone ML, Schwab JH (2019) Prognostic value of serum alkaline phosphatase in spinal metastatic disease. Br J Cance 120(6):640–646

    Article  CAS  Google Scholar 

  5. Zhang H, Ju Q, Pang S, Wei N, Zhang Y (2021) Recent progress of fluorescent probes for the detection of alkaline phosphatase (ALP): a review. Dyes Pigm 194:109569

    Article  CAS  Google Scholar 

  6. Zhang Y, Nie Y, Zhu R, Han D, Zhao H, Li Z (2019) Nitrogen doped carbon dots for turn-off fluorescent detection of alkaline phosphatase activity based on inner filter effect. Talanta 204:74–81

    Article  CAS  PubMed  Google Scholar 

  7. Li S, Chen Z, Yang F, Yue W (2023) Self-template sacrifice and in situ oxidation of a constructed hollow MnO2 nanozymes for smartphone-assisted colorimetric detection of liver function biomarkers. Anal Chim Acta 1278:341744

    Article  CAS  PubMed  Google Scholar 

  8. Wang XY, Wu MX, Ding SN (2020) Anodic electrochemiluminescence from CsPbBr3 perovskite quantum dots for an alkaline phosphatase assay. Chem Commun 56(58):8099–8102

    Article  CAS  Google Scholar 

  9. Zhang Y, Li P, Lu J, Li D, Yang H, Li X, Liu Y (2022) A novel electrochemical platform for assay of alkaline phosphatase based on amifostine and ATRP signal amplification. Anal Bioanal Chem 414(23):6955–6964

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Liu Z, Zhao W, Sun J, Qian B, Wang X, Zeng H, Du D, Duan J (2019) A novel switchable fluorescent sensor for facile and highly sensitive detection of alkaline phosphatase activity in a water environment with gold/silver nanoclusters. Anal Bioanal Chem 411(5):1009–1017

    Article  CAS  PubMed  Google Scholar 

  11. Yu LD, Wang YN, Zhang XY, Li NB, Luo HQ (2021) A novel signal-on photoelectrochemical platform for highly sensitive detection of alkaline phosphatase based on dual Z-scheme CdS/Bi2S3/BiOCl composites. Sens Actuators B Chem 340:129988

    Article  CAS  Google Scholar 

  12. Zhang Q, Chen Z, Shi Z, Li Y, An Z, Li X, Shan J, Lu Y, Liu Q (2021) Smartphone-based photoelectrochemical biosensing system with graphitic carbon nitride/gold nanoparticles modified electrodes for matrix metalloproteinase-2 detection. Biosens Bioelectron 193:113572

    Article  CAS  PubMed  Google Scholar 

  13. Fan GC, Shi XM, Zhang JR, Zhu JJ (2016) Cathode photoelectrochemical immunosensing platform integrating photocathode with photoanode. Anal Chem 88(21):10352–10356

    Article  CAS  PubMed  Google Scholar 

  14. Cui Z, Li D, Yan S, Zhou L, Ge S (2024) Electrochemical reduction induced OVD in BiOBr nanosheets for sensitive photoelectrochemical detection of doxycycline. Appl Surf Sci 643:158713

    Article  CAS  Google Scholar 

  15. Neven L, Shanmugam ST, Rahemi V, Trashin S, Sleegers N, Carrion EN, Gorun SM, De Wael K (2019) Optimized photoelectrochemical detection of essential drugs bearing phenolic groups. Anal Chem 91(15):9962–9969

    Article  CAS  PubMed  Google Scholar 

  16. Zhang N, Dai D, Hu P, Guo S, Yang H (2022) Dual-modal photoelectrochemical and visualized detection of copper ions. ACS Omega 7(6):5415–5420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li HG, Zhu YM, Liu XL, Guo ZY, Huang YN, Chen X (2023) Colorimetric sensing of hydrogen peroxide based on the wavelength-shift of CsPbBr3 perovskite nanocrystals on water-oil interface. J Anal Test 7(1):1–7

    Article  Google Scholar 

  18. Mao L, Xiao Y, Liu H, Zhang X, Wang S, Huang WH, Chen MM (2023) Water-stable CsPbBr3/reduced graphene oxide nanoscrolls for high-performance photoelectrochemical sensing. Adv Funct Mater 33(20):22113814

    Article  Google Scholar 

  19. Deng L, Ma F, Yang M, Li X, Chen X (2023) A halide perovskite/lead sulfide heterostructure with enhanced photoelectrochemical performance for the sensing of alkaline phosphatase (ALP). Chem Commun 59(10):1361–1364

    Article  CAS  Google Scholar 

  20. Yuan J, Zou Y (2022) The history and development of Y6. Org Electron 102:106436

    Article  CAS  Google Scholar 

  21. Luo J, Zeng Q, Liu S, Wei Q, Wang Z, Yang M, Zou Y, Lu L (2022) Highly sensitive photoelectrochemical sensing platform based on PM6:Y6 p-n heterojunction for detection of MCF-7 cells. Sens Actuators B Chem 363:131814

    Article  CAS  Google Scholar 

  22. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15(6):3692–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang R, Yan X, Li Y, Zhang X, Chen J (2017) Nitrogen-doped porous carbon-ZnO nanopolyhedra derived from ZIF-8: new materials for photoelectrochemical biosensors. ACS Appl Mater Interfaces 9(49):42482–42491

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Zhang Y, Jiang H, Qi X, Zhang X, Zhu B, Han L (2023) CeO2@nanogel/Au nanozymes to enhance peroxidase activity for a novel ultrasensitive SERS assay of H2O2 determination. Microchem J 195:109467

    Article  CAS  Google Scholar 

  25. Beiler AM, McCarthy BD, Johnson BA, Ott S (2020) Enhancing photovoltages at p-type semiconductors through a redox-active metal-organic framework surface coating. Nat Commun 11(1):5819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khodagholi F, Yazdanparast R (2007) Cooperative effects of artificial chaperone and Mg2+ ions on alkaline phosphatase refolding. Biochem Eng J 36(2):123–130

    Article  CAS  Google Scholar 

  27. Hemed NM, Convertino A, Shacham Diamand Y (2018) Alkaline phosphatase detection using electrochemical impedance of anti-alkaline phosphatase antibody (Ab354) functionalized silicon-nanowire-forest in phosphate buffer solution. Sens Actuators B Chem 259:809–815

    Article  Google Scholar 

  28. Li X, Lu J, Li Z, Yang H, Li W, Liu Y, Miao M (2022) Electrochemical detection of alkaline phosphatase activity via atom transfer radical polymerization. Bioelectrochem 144:107998

    Article  CAS  Google Scholar 

  29. Xi CY, Zhang M, Jiang L, Chen HY, Lv J, He Y, Hafez ME, Qian RC, Li DW (2022) MOFs-functionalized regenerable SERS sensor based on electrochemistry for pretreatment-free detection of serum alkaline phosphatase activity. Sens Actuators B Chem 369

  30. Wang DE, Gao X, Li G, Xue T, Yang H, Xu H (2019) Facile colorimetric assay of alkaline phosphatase activity using polydiacetylene liposomes with calcium ions and pyrophosphate. Sens Actuators B Chem 289:85–92

    Article  CAS  Google Scholar 

  31. Shi Y, Yang M, Liu Y, Pang Y, Long Y, Zheng H (2018) GTP as a peroxidase-mimic to mediate enzymatic cascade reaction for alkaline phosphatase detection and alkaline phosphatase-linked immunoassay. Sens Actuators B Chem 275:43–49

    Article  CAS  Google Scholar 

  32. Xiao W, Liu F, Yan GP, Shi WG, Peng KI, Yang XQ, Li XJ, Yu HE, Shi ZY, Zeng HH (2020) Yttrium vanadates based ratiometric fluorescence probe for alkaline phosphatase activity sensing. Colloids Surf B Biointerfaces 185:110618

    Article  CAS  PubMed  Google Scholar 

  33. Ding SS, Li MX, Xiang Y, Tang J, Zhang Q, Huang M, Zhao XH, Wang J, Li CM (2022) Synergistic effect-mediated fluorescence switching of nitrogen-doped carbon dots for visual detection of alkaline phosphatase. Microchem J 181:107651

    Article  Google Scholar 

  34. Kang Q, Wang X, Ma X, Kong L, Zhang P, Shen D (2016) Sensitive detection of ascorbic acid and alkaline phosphatase activity by double-channel photoelectrochemical detection design based on g-C3N4/TiO2 nanotubes hybrid film. Sens Actuators B Chem 230:231–241

    Article  CAS  Google Scholar 

  35. Zhao CQ, Zhou J, Wu KW, Ding SN, Xu JJ, Chen HY (2020) Plasmonic enhanced gold nanoclusters-based photoelectrochemical biosensor for sensitive alkaline phosphatase activity analysis. Anal Chem 92(10):6886–6892

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are thankful for the support of this work by the Natural Science Foundation of Hunan Province (Grant No. 2023JJ70059) and the National Natural Science Foundation of China (Grant No. 22174163).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghui Yang or Anjie Min.

Ethics declarations

Ethics approval

All experiments were in accordance with the guidelines of the National Institute of Health, China, and approved by the Institutional Ethical Committee (IEC) of Central South University.

Consent to participate

We also obtained informed consent for any experimentation with human serum samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, R., Deng, L., Hu, S. et al. Detection of alkaline phosphatase activity with a CsPbBr3/Y6 heterojunction-based photoelectrochemical sensor. Microchim Acta 191, 316 (2024). https://doi.org/10.1007/s00604-024-06393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06393-2

Keywords

Navigation