Skip to main content
Log in

Ultrasensitive and specific photoelectrochemical sensor for hydrogen peroxide detection based on pillar[5]arene-functionalized Au nanoparticles and MWNTs hybrid BiOBr heterojunction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photoelectrochemical sensor for target detection of hydrogen peroxide was designed based on a new heterojunction nanocomposite which was sulfhydryl-borate ester–modified A1/B1-type pillar[5]arene (BP5)–functionalized Au NPs and multi-walled carbon nanotubes hybridized with bismuth bromide oxide (Au@BP5/MWNTs-BiOBr). The specific sensor was based on the direct induction of oxidation by hydrogen peroxide of the borate ester group of pillar[5]arene. Additionally, the local surface plasmon resonance (LSPR) of Au NPs enhanced visible light capture, the host–guest complexation of BP5 with H2O2 enhanced photocurrent response, the layer-by-layer stacked nanoflower structure of BiOBr provided large specific surface area with more active sites, and the conductivity of MWNTs enhanced the charge separation efficiency and significantly improves the stability of PEC. Their synthesis effect significantly increased the photocurrent signal and further enhanced the detection result. Under the optimal conditions, the linear concentration range of H2O2 detected by the Au@BP5/MWNTs-BiOBr sensor was from 1 to 60 pmol/L. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were 0.333 pmol/L and 1 pmol/L, respectively, and the sensitivity was 6.471 pmol/L. Importantly, the PEC sensor has good stability, reproducibility, and interference resistance and can be used for the detection of hydrogen peroxide in real cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Jacewicz D, Siedleck-kroplewska K, Drzeżdżon J et al (2017) Method for detection of hydrogen peroxide in HT22 cells. J Sci Rep 7:45673

    Article  Google Scholar 

  2. Jiao X, Li Y, Niu J et al (2017) Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems. J Anal Chem 90:533–555

    Article  Google Scholar 

  3. Asif M, Aziz A, Ashraf G et al (2022) Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: a textile sensor for H2O2 detection in clinical cancer tissues. J Chem Eng J 427:131398

    Article  CAS  Google Scholar 

  4. Weidinger A, Kozlov A (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. J Biomol 5:472–484

    CAS  Google Scholar 

  5. Asif M, Haitao W, Shuang D et al (2017) Metal oxide intercalated layered double hydroxide nanosphere: with enhanced electrocatalyic activity towards H2O2 for biological applications. J Sensors Actuators B: Chem 239:243–252

    Article  CAS  Google Scholar 

  6. Lampard EV, Sedgwick AC, Sun X et al (2018) Boronate-based fluorescence probes for the detection of hydrogen peroxide. J Chemistryopen 7:262–265

    Article  CAS  Google Scholar 

  7. Asif M, Liu H, Aziz A et al (2017) Core-shell iron oxide-layered double hydroxide: high electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics. J Biosens Bioelectron 97:352–359

    Article  CAS  Google Scholar 

  8. Zhang Z, Liu H, Zhai L et al (2023) Construction of BiOCl-TNTs photoelectrochemical sensor for detection of hydrogen peroxide. J Chem Phys Lett 811:140177

    Article  CAS  Google Scholar 

  9. Cheng D, Wu H, Feng C et al (2022) Bifunctional photoelectrochemical sensor based on Bi/Bi2S3/BiVO4 for detecting hexavalent chromium and hydrogen peroxide. J Sensors Actuators B: Chem 353:131108

    Article  CAS  Google Scholar 

  10. Zhang M, Chen M, Liu Y et al (2019) Catalase-inorganic hybrid microflowers modified glassy carbon electrode for amperometric detection of hydrogen peroxide. J Mater Lett 243:9–12

    Article  CAS  Google Scholar 

  11. Dutta A, Maitra U (2022) Naked-eye detection of hydrogen peroxide on photoluminescent paper discs. J Am Chem Soc 7:512–522

    Google Scholar 

  12. Wei Y, Liu Y, He Y et al (2021) Mitochondria and lysosome-targetable fluorescent probes for hydrogen peroxide. J J Mater Chem B 9:908–920

    Article  CAS  PubMed  Google Scholar 

  13. Zou J, Cai H, Wang D et al (2019) Spectrophotometric determination of trace hydrogen peroxide via the oxidative coloration of DPD using a Fenton system. J Chemosphere 224:646–652

    Article  CAS  Google Scholar 

  14. Li Z, Lu J, Wei W et al (2022) Recent advances in electron manipulation of nanomaterials for photoelectrochemical biosensors. J Chem Commun 58:12418–12430

    Article  CAS  Google Scholar 

  15. Li F, Zhou Y, Yin H et al (2022) Recent advances on signal amplification strategies in photoelectrochemical sensing of microRNAs. J Biosens Bioelectron 166:112476

    Article  Google Scholar 

  16. Wang S, Kuang P, Cheng B et al (2018) ZnO hierarchical microsphere for enhanced photocatalytic activity. J J Alloys Compd 741:622–632

    Article  CAS  Google Scholar 

  17. Zang J, Cheng F, Li J et al (2016) Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives. J Nano Today 11:309–329

    Article  Google Scholar 

  18. Zhang L, Ying Y, Li Y et al (2020) Integration and synergy in protein-nanomaterial hybrids for biosensing: strategies and in-field detection applications. J Biosens Bioelectron 154:112036

    Article  CAS  Google Scholar 

  19. Ai Y, Liang P, Wu Y et al (2018) Rapid qualitative and quantitative determination of food colorants by both Raman spectra and surface-enhanced Raman scattering (SERS). J Food Chem 241:427–433

    Article  CAS  Google Scholar 

  20. Pancholi D, Bisht NS, Pande V et al (2021) Development of novel BiOBr0.75I0.25 nanostructures with remarkably high dark phase bactericidal activities. J Colloids and Surfaces B: Biointerfaces 199:111558

  21. Guo Y, Wang P, Qian J et al (2017) Construction of a composite photocatalyst with significantly enhanced photocatalytic performance through combination of homo-junction with hetero-junction. J Catal Sci Technol 8:486–498

    Article  Google Scholar 

  22. Zhang W, Dong F, Xiong T et al (2014) Synthesis of BiOBr–graphene and BiOBr–graphene oxide nanocomposites with enhanced visible light photocatalytic performance. J Ceram Int 40:9003–9008

    Article  CAS  Google Scholar 

  23. Janani S, Sudha Rani KS, Ellappan P et al (2016) Photodegradation of methylene blue using magnetically reduced graphene oxide bismuth oxybromide composite. J J Environ Chem Eng 4:534–541

    Article  Google Scholar 

  24. Bisht NS, Tripathi AH, Pant M et al (2022) A facile synthesis of palladium nanoparticles decorated bismuth oxybromide nanostructures with exceptional photo-antimicrobial activities. J Colloids Surf B: Biointerfaces 217:112640

    Article  CAS  PubMed  Google Scholar 

  25. Asif M, Aziz A, Wang H et al (2019) Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. J Microchim Acta 186:61

    Article  Google Scholar 

  26. Monti S, Barcaro G, Goddard WA III et al (2021) Diverse phases of carbonaceous materials from stochastic simulations. J ACS Nano 15:6369–6385

    Article  CAS  Google Scholar 

  27. Asif M, Aziz A, Wang Z et al (2019) Hierarchical CNTs@CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. J Anal Chem 91:3912–3920

    Article  CAS  Google Scholar 

  28. Zhang B, He Y, Liu B et al (2014) NiCoBP-doped carbon nanotube hybrid: a novel oxidase mimetic system for highly efficient electrochemical immunoassay. J Anal Chim Acta 851:49–56

    Article  CAS  Google Scholar 

  29. Lee H, Yoon SW, Kim EJ et al (2007) In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. J Nano Lett 7:778–784

    Article  CAS  Google Scholar 

  30. Lin Y, Chen X, Lin Y et al (2015) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. J Microchim Acta 182:1803–1809

    Article  CAS  Google Scholar 

  31. Chen Y, Sun S, Lu D et al (2019) Water-soluble supramolecular polymers constructed by macrocycle-based host-guest interactions. J Chin Chem Lett 30:37–43

    Article  CAS  Google Scholar 

  32. Jiang C, Song Z, Yu L et al (2020) Fluorescent probes based on macrocyclic hosts: construction, mechanism and analytical applications. J TrAC Trends Anal Chem 133:116086

    Article  CAS  Google Scholar 

  33. Guo F, Sun Y, Xi B et al (2017) Recent progress in the research on the host-guest chemistry of pillar[n]arenes. J Supramol Chem 30:1–12

    CAS  Google Scholar 

  34. Guo L, Du J, Wang Y et al (2020) Advances in diversified application of pillar[n]arenes. J J Incl Phenom Macrocycl Chem 97:1–17

    Article  CAS  Google Scholar 

  35. Yuan Z, Hu CC, Chang HT et al (2016) Gold nanoparticles as sensitive optical probes. J Anal 144:1611–1626

    Article  Google Scholar 

  36. Cai G, Yu Z, Ren R et al (2018) Exciton–plasmon interaction between AuNPs/graphene nanohybrids and CdS quantum Dots/TiO2 for photoelectrochemical aptasensing of prostate-specific antigen. J ACS Sensors 3:632–639

    Article  CAS  Google Scholar 

  37. Lv S, Zang K, Zhou Q et al (2020) Plasmonic enhanced photoelectrochemical aptasensor with D-A F8BT/g-C3N4 heterojunction and AuNPs on a 3D-printed device. J Sensors Actuators B: Chem 310:127874

    Article  CAS  Google Scholar 

  38. Zhou Q, Albert O, Deng H et al (2012) Effect of functional groups on the crystallization of ferric oxides/oxyhydroxides in suspension environment. J Front Mater Sci 6:297–303

    Article  Google Scholar 

  39. Asif M, Aziz A, Ashraf G et al (2018) Facet-inspired core–shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids. J ACS Appl Mater Interfaces 10:36675–36685

    Article  CAS  Google Scholar 

  40. Liu F, Dai Y, Chen F et al (2020) Lead bismuth oxybromide/graphene oxide: synthesis, characterization, and photocatalytic activity for removal of carbon dioxide, crystal violet dye, and 2-hydroxybenzoic acid. J J Colloid Interface Sci 562:112–124

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Zhou L, Bei J et al (2022) An enhanced photo-electrochemical sensor constructed from pillar [5]arene functionalized Au NPs for ultrasensitive detection of caffeic acid. J Talanta 243:123322

    Article  CAS  Google Scholar 

  42. Wang J, Zhou L, Bei J et al (2022) An specific photoelectrochemical sensor based on pillar[5]arenes functionalized gold nanoparticles and bismuth oxybromide nanoflowers for bovine hemoglobin recognition. J J Colloid Interface Sci 620:187–198

    Article  CAS  PubMed  Google Scholar 

  43. Wang J, Bei J, Guo X et al (2022) Ultrasensitive photoelectrochemical immunosensor for carcinoembryonic antigen detection based on pillar[5]arene-functionalized Au nanoparticles and hollow PANI hybrid BiOBr heterojunction. J Biosens Bioelectron 208:114220

    Article  CAS  Google Scholar 

  44. Tharmaraj V, Anbu, Anjugam, Vandarkuzhali S, Karthiletan G, et al (2022) Efficient and recyclable AuNPs/aminoclay nanocomposite catalyst for the reduction of organic dyes. J Surfaces and Interfaces 32:102052

  45. Gao Y, Yu Z, Huang L et al (2023) Photoinduced electron transfer modulated photoelectric signal: toward an organic small molecule-based photoelectrochemical platform for formaldehyde detection [J]. Anal Chem 95:9130–9137

    Article  CAS  PubMed  Google Scholar 

  46. Lu L, Zeng R, Lin Q et al (2023) Cation exchange reaction-mediated photothermal and polarity-switchable photoelectrochemical dual-readout biosensor. J Anal Chem 95:16335–16342

    Article  CAS  Google Scholar 

  47. Wang J, Lu C, Chen T et al (2019) Simply synthesized nitrogen-doped graphene quantum dot (NGQD)-modified electrode for the ultrasensitive photoelectrochemical detection of dopamine. J Nanophotonics 9:3831–3839

    Article  Google Scholar 

  48. Jiang J, Zhang X, Sun P et al (2011) ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J J Phys Chem C 115:20555–20564

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 32101215).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Chen or Yong Yao.

Ethics declarations

Ethics approval

This research did not involve human or animal samples.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhou, Q., Fan, C. et al. Ultrasensitive and specific photoelectrochemical sensor for hydrogen peroxide detection based on pillar[5]arene-functionalized Au nanoparticles and MWNTs hybrid BiOBr heterojunction. Microchim Acta 191, 266 (2024). https://doi.org/10.1007/s00604-024-06302-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06302-7

Keywords

Navigation