Skip to main content
Log in

Portable wireless electrochemical sensing of breviscapine using core–shell ZIFs-derived Co nanoparticles embedded in N-doped carbon nanotube polyhedra-modified electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A core–shell ZIF-67@ZIF-8-derived Co nanoparticles embedded in N-doped carbon nanotube polyhedra (Co/C-NCNP) hybrid nanostructure was prepared by a pyrolysis method. The synthesized Co/C-NCNP was modified on the screen-printed carbon electrode and used for the portable wireless sensitive determination of breviscapine (BVC) by differential pulse voltammetry. The Co/C-NCNP had a large surface area and excellent catalytic activity with increasing Co sites to combine with BVC for selective determination, which led to the improvement of the sensitivity of the electrochemical sensor. Under optimized conditions, the constructed sensor had linear ranges from 0.15 to 20.0 µmol/L and 20.0 to 100.0 µmol/L with the limit of detection of 0.014 µmol/L (3S0/S). The sensor was successfully applied to BVC tablet sample analysis with satisfactory results. This work provided the potential applications of zeolitic imidazolate framework-derived nanomaterials in the fabrication of electrochemical sensors for the sensitive detection of drug samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu XN, Cheng J, Zhang GH, Ding WT, Duan LJ, Yang J, Kui L, Cheng XZ, Ruan JX, Fan W, Chen JW, Long GQ, Zhao Y, Cai J, Wang W, Ma YH, Dong Y, Yang SC, Jiang HF (2018) Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nat Commun 9:448. https://doi.org/10.1038/s41467-018-02883-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lan T, Jiang S, Zhang J, Weng QQ, Yu Y, Li HN, Tian S, Ding X, Hu S, Yang YQ, Wang WX, Wang LX, Luo DS, Xiao X, Piao SH, Zhu Q, Rong XL, Guo J (2022) Breviscapine alleviates NASH by inhibiting TGF-β-activated kinase 1-dependent signaling. Hepatology 76(1):155–171. https://doi.org/10.1002/hep.32221

    Article  CAS  PubMed  Google Scholar 

  3. Yang C, Zhao Q, Yang SS, Wang LB, Xu XY, Li LS, Al-Jamal WT (2022) Intravenous administration of scutellarin nanoparticles augments the protective effect against cerebral ischemia-reperfusion injury in rats. Mol Pharmaceutics 19(5):1410–1421. https://doi.org/10.1021/acs.molpharmaceut.1c00942

    Article  CAS  Google Scholar 

  4. Chu JH, Zou C, Li CY, Zhang J, Zhao Y, Xu MJ, Wu T, Ju WZ (2016) Determination of scutellarein in human plasma by enzymatic hydrolysis and liquid chromatograph-triple quadrupole tandem mass spectrometer analysis: its use in determining the bioequivalence of scutellarin in Chinese volunteers. Eur J Integr Med 8(4):519–525. https://doi.org/10.1016/j.eujim.2016.03.014

    Article  Google Scholar 

  5. Yao H, Huang XM, Shi PY, Lin Z, Zhu ML, Liu AL, Lin XH, Tang YH (2017) DPPH·-luminol chemiluminescence system and its application in the determination of scutellarin in pharmaceutical injections and rat plasma with flow injection analysis. Luminescence 32(4):588–595. https://doi.org/10.1002/bio.3225

    Article  CAS  PubMed  Google Scholar 

  6. Jiang ZZ, Yang J, Jiao YJ, Li W, Chai X, Zhang L, Jiang MM, Wang YF (2016) Determination of scutellarin in breviscapine preparations using quantitative proton nuclear magnetic resonance spectroscopy. J Food Drug Anal 24(2):392–398. https://doi.org/10.1016/j.jfda.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tian YY, Li QQ, Zhou XP, Pang Q, Xu YJ (2017) A UHPLC-MS/MS method for simultaneous determination of twelve constituents from Erigeron breviscapus extract in rat plasma: application to a pharmacokinetic study. J Chromatogr B 1046:1–12. https://doi.org/10.1016/j.jchromb.2017.01.020

    Article  CAS  Google Scholar 

  8. Eyvazi S, Baradaran B, Mokhtarzadeh A, Guardia M (2021) Recent advances on development of portable biosensors for monitoring of biological contaminants in foods. Trends Food Sci Tech 114:712–721. https://doi.org/10.1016/J.TIFS.2021.06.024

    Article  CAS  Google Scholar 

  9. Shi F, Ai YJ, Wang BL, Yao YC, Zhang ZJ, Zhou J, Wang XH, Sun W (2022) Portable wireless intelligent electrochemical sensor for the ultrasensitive detection of rutin using functionalized black phosphorene nanocomposite. Molecules 27(19):6603. https://doi.org/10.3390/molecules27196603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shao B, Ai YJ, Yan LJ, Wang B, Huang YH, Zou QW, Fu HY, Niu XL, Sun W (2023) Wireless electrochemical sensor for the detection of phytoregulator indole-3-acetic acid using gold nanoparticles and three-dimensional reduced graphene oxide modified screen printed carbon electrode. Talanta 253:124030. https://doi.org/10.1016/j.talanta.2022.124030

    Article  CAS  Google Scholar 

  11. Li XQ, Wang LS, Yan LJ, Han X, Zhang ZJ, Zhang XP, Sun W (2023) A portable wireless intelligent nanosensor for 6,7-dihydroxycoumarin analysis with a black phosphorene and nano-diamond nanocomposite-modified electrode. Biosensors 13(2):153. https://doi.org/10.3390/bios13020153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen YX, Sun YX, Niu YY, Wang BL, Zhang ZJ, Zeng LN, Li L, Sun W (2023) Portable electrochemical sensing of indole-3-acetic acid based on self-assembled MXene and multi-walled carbon nanotubes composite modified screen-printed electrode. Electroanal 35(3):e2200279. https://doi.org/10.1002/elan.202200279

    Article  CAS  Google Scholar 

  13. Ge Y, Liu P, Xu LJ, Qu MR, Hao WX, Liang H, Sheng YY, Zhu YF, Wen YP (2022) A portable wireless intelligent electrochemical sensor based on layer-by-layer sandwiched nanohybrid for terbutaline in meat products. Food Chem 371:131140. https://doi.org/10.1016/j.foodchem.2021.131140

    Article  CAS  PubMed  Google Scholar 

  14. He QG, Wang B, Liang J, Liu J, Liang B, Li GL, Long YH, Zhang GY, Liu HM (2023) Research on the construction of portable electrochemical sensors for environmental compounds quality monitoring. Mater Today Adv 17:100340. https://doi.org/10.1016/j.mtadv.2022.100340

    Article  CAS  Google Scholar 

  15. Ma MC, Lu XF, Guo Y, Wang LC, Liang XJ (2022) Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): recent advances in synthesis and analytical applications of MOF/COF composites. TrAC Trend Anal Chem 157:116741. https://doi.org/10.1016/j.trac.2022.116741

    Article  CAS  Google Scholar 

  16. Liu CS, Li JJ, Pang H (2020) Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 410:213222. https://doi.org/10.1016/j.ccr.2020.213222

    Article  CAS  Google Scholar 

  17. Luo GL, Zou RY, Niu YY, Zhang Y, Zhang BX, Liu J, Li GJ, Sun W (2020) Fabrication of ZIF-67@three-dimensional reduced graphene oxide aerogel nanocomposites and their electrochemical applications for rutin detection. J Pharm Biomed Anal 190:113505. https://doi.org/10.1016/j.jpba.2020.113505

    Article  CAS  PubMed  Google Scholar 

  18. Luo GL, Deng Y, Zhang XP, Zou RY, Sun W, Li BH, Sun B, Wang YB, Li GJ (2019) A ZIF-8 derived nitrogen-doped porous carbon and nitrogen-doped graphene nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. New J Chem 43:16819–16828. https://doi.org/10.1039/C9NJ04095A

    Article  CAS  Google Scholar 

  19. Li XT, Liang HJ, Liu XL, Zhang YF, Liu ZL, Fan HS (2022) Zeolite imidazolate frameworks (ZIFs) derived nanomaterials and their hybrids for advanced secondary batteries and electrocatalysis. Chem Rec 22(10):e202200105. https://doi.org/10.1002/tcr.202200105

    Article  CAS  PubMed  Google Scholar 

  20. Huang RM, Liao D, Liu ZH, Yu JG, Jiang XY (2021) Electrostatically assembling 2D hierarchical Nb2CTx and zifs-derivatives into Zn-Co-NC nanocage for the electrochemical detection of 4-nitrophenol. Sensor Actuat B-Chem 338:129828. https://doi.org/10.1016/j.snb.2021.129828

    Article  CAS  Google Scholar 

  21. Song XK, Jiang Y, Cheng F, Earnshaw J, Na J, Li XP, Yamauchi Y (2020) Hollow carbon-based nanoarchitectures based on ZIF: inward/outward contraction mechanism and beyond. Small 17(2):2004142. https://doi.org/10.1002/smll.202004142

    Article  CAS  Google Scholar 

  22. Karimi-Harandi MH, Shabani-Nooshabadi M, Darabi R (2022) Simultaneous determination of citalopram and selegiline using an efficient electrochemical sensor based on ZIF-8 decorated with RGO and g-C3N4 in real samples. Anal Chim Acta 1203:339662. https://doi.org/10.1016/j.aca.2022.339662

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Tan Y, Song WJ (2020) Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review. Microchim Acta 187:234. https://doi.org/10.1007/s00604-020-4173-3

    Article  CAS  Google Scholar 

  24. Saeb E, Asadpour-Zeynali K (2022) A novel ZIF-8@ZIF-67/Au core-shell metal organic framework nanocomposite as a highly sensitive electrochemical sensor for nitrite determination. Electrochim Acta 417:140278. https://doi.org/10.1016/j.electacta.2022.140278

    Article  CAS  Google Scholar 

  25. Zhang JJ, Wang DY, Li YC (2019) Ratiometric electrochemical sensors associated with self-cleaning electrodes for simultaneous detection of adrenaline, serotonin, and tryptophan. ACS Appl Mater Interfaces 11(14):13557–13563. https://doi.org/10.1021/acsami.8b22572

    Article  CAS  PubMed  Google Scholar 

  26. Yang J, Zhang FJ, Lu HY, Hong X, Jiang HL, Wu YE, Li YD (2015) Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew Chem Int Edit 54(37):10889–10893. https://doi.org/10.1002/anie.201504242

    Article  CAS  Google Scholar 

  27. Pan Y, Sun KA, Liu SJ, Cao X, Wu KL, Cheong WC, Chen Z, Wang Y, Li Y, Liu YQ, Wang DS, Peng Q, Chen C, Li YD (2018) Core−shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc 140(7):2610–2618. https://doi.org/10.1021/jacs.7b12420

    Article  CAS  PubMed  Google Scholar 

  28. Panchariya DK, Rai RK, Kumar EA, Singh SK (2018) Core-shell zeolitic imidazolate frameworks for enhanced hydrogen storage. ACS Omega 3(1):167–175. https://doi.org/10.1021/acsomega.7b01693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun KK, Sun JL, Lu GP, Cai C (2019) Enhanced catalytic activity of cobalt nanoparticles encapsulated with an N-doped porous carbon shell derived from hollow ZIF-8 for efficient synthesis of nitriles from primary alcohols in water. Green Chem 21:4334–4340. https://doi.org/10.1039/C9GC01893J

    Article  CAS  Google Scholar 

  30. Zhang JC, Zhang TC, Xiao KS, Cheng S, Qian G, Wang Y, Feng Y (2016) Novel and facile strategy for controllable synthesis of multilayered core-shell zeolitic imidazolate frameworks. Cryst Growth Des 16(11):6494–6498. https://doi.org/10.1021/acs.cgd.6b01161

    Article  CAS  Google Scholar 

  31. Li HJ, Zhuang SY, Zhao BY, Yu YX, Liu YD (2023) Visualization of the gas permeation in core-shell MOF/Polyimide mixed matrix membranes and structural optimization based on finite element equivalent simulation. Sep Purif Technol 305:122504. https://doi.org/10.1016/j.seppur.2022.122504

    Article  CAS  Google Scholar 

  32. Luo GL, Deng Y, Zhu L, Liu J, Zhang BX, Zhang Y, Sun W, Li GJ (2020) Au-Co nanoparticles-embedded N-doped carbon nanotube hollow polyhedron modified electrode for electrochemical determination of quercetin. Mikrochim Acta 187(10):546. https://doi.org/10.1007/s00604-020-04531-0

    Article  CAS  PubMed  Google Scholar 

  33. Liu DS, Li MN, Li XC, Ren FJ, Sun P, Zhou LC (2020) Core-shell Zn/Co MOFs derived Co3O4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation. Chem Eng J 387:124008. https://doi.org/10.1016/j.cej.2019.124008

    Article  CAS  Google Scholar 

  34. Liu Y, Chen XY, Yang YL, Feng Y, Wu DL, Mao S (2019) Activation of persulfate with metal-organic framework-derived nitrogen-doped porous Co@C nanoboxes for highly efficient p-Chloroaniline removal. Chem Eng J 358:408–418. https://doi.org/10.1016/j.cej.2018.10.012

    Article  CAS  Google Scholar 

  35. Yang XB, Chen J, Chen YQ, Feng PJ, Lai HX, Li JT, Luo XT (2018) Novel Co3O4 nanoparticles/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano-Micro Lett 10:15. https://doi.org/10.1007/s40820-017-0170-4

    Article  CAS  Google Scholar 

  36. Li YF, Fu YY, Liu WB, Song YH, Wang L (2019) Hollow Co-Co3O4@CNTs derived from ZIF-67 for lithium ion batteries. J Alloys Compd 784:439–446. https://doi.org/10.1016/j.jallcom.2019.01.085

    Article  CAS  Google Scholar 

  37. Wang YL, Ni MJ, Chen J, Wang CX, Yang YQ, Xie YX, Zhao PC, Fei JJ (2023) An ultra-sensitive luteolin sensor based on Co-doped nitrogen-containing carbon framework/MoS2-MWCNTs composite for natural sample detection. Electrochim Acta 438:141534. https://doi.org/10.1016/j.electacta.2022.141534

    Article  CAS  Google Scholar 

  38. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101(1):19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  39. Wang Y, Wang L, Chen HH, Hu XY, Ma SQ (2016) Fabrication of highly sensitive and stable hydroxylamine electrochemical sensor based on gold nanoparticles and metal-metalloporphyrin framework modified electrode. ACS Appl Mater Interfaces 8(28):18173–18181. https://doi.org/10.1021/acsami.6b04819

    Article  CAS  PubMed  Google Scholar 

  40. Marlinda AR, Pandikumar A, Yusoff N, Huang NM, Lim HN (2015) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182:1113–1122. https://doi.org/10.1007/s00604-014-1436-x

    Article  CAS  Google Scholar 

  41. Huang JM, Li N, Yu YQ, Weng WY, Huang XB (2006) Determination of aglycone conjugated metabolites of scutellarin in rat plasma by HPLC. J Pharm Biomed Anal 40(2):465–471. https://doi.org/10.1016/j.jpba.2005.07.051

    Article  CAS  PubMed  Google Scholar 

  42. Zhao X, Zhang Y, Gao DF, Xiong HB, Gao YT, Li SM, Li XF, Yang Z, Liu MH, Dai JH, Zhang DH (2019) Electrochemical behavior and determination of four drugs using multi-wall carbon nanotubes modified glassy carbon electrode. Int J Electrochem Sci 14 (1):506–515. https://doi.org/10.20964/2019.01.44

  43. Li QL, Yang M, Gao YT, Fang ML, Liu Q, Li DD (2011) Determination of breviscapine at inlaid carbon nanotubes modified graphite electrode. Chem Res Appl 23(6):742–745. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e7tvjWANqNvp-t_hp3-WOsfVIBLhmrM45nz5KtnwGRW7jSaj7Sr6gFNnj19G25VNf6&uniplatform=NZKPT

  44. Wang ZW, Zhang Q, Yuan LL, Gao YT, Wang ZF (2012) Electrochemical determination of breviscapine at the multi-wall carbon nanotubes screen printed electrode. J Anal Sci 28(6):823–826. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e7fm4X_1ttJAlRPUHpHyQ2GQhVAL_wogn9rI7AXtTZ-nfeOUlnUJheVX0MzpkkEJeB&uniplatform=NZKPT

  45. Chu QC, Wu T, Fu L, Ye JN (2005) Simultaneous determination of active ingredients in Erigeron breviscapus (Vant.) Hand-Mazz. by capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal 37(3):535–541. https://doi.org/10.1016/j.jpba.2004.11.018

Download references

Funding

The authors would like to acknowledge the supports from the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province (YSPTZX202126), the National Natural Science Foundation of China (21964007), the Innovation Platform for Academicians of Hainan Province, and the Open Foundation of Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province (2022LTOM02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Zhang or Wei Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Shi, F., Ai, Y. et al. Portable wireless electrochemical sensing of breviscapine using core–shell ZIFs-derived Co nanoparticles embedded in N-doped carbon nanotube polyhedra-modified electrode. Microchim Acta 191, 290 (2024). https://doi.org/10.1007/s00604-024-06298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06298-0

Keywords

Navigation