Skip to main content
Log in

Polymer-free nanocomposite from zeolite and acetylene carbon black as glassy carbon modifier platform for simultaneous electrochemical quantification of acetaminophen and caffeine

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocomposite nanozeolite/acetylene carbon black was prepared by combining a type A zeolite with acetylene carbon black (AcB) and used to modify glassy carbon electrode (GCE) without polymer. The zeolite was prepared by hydrothermal method using natural kaolin. The physicochemical characterization of the composite showed a well-integrated composite in which the cubic crystal of the zeolite A and the graphitic aggregate of the carbon black were maintained. The electrochemical impedance spectroscopy study revealed that the composite film GCE (ZA-AcB/GCE) prepared by drop coating displayed a higher kinetic charge transfer compared to pristine zeolite modified GCE (ZA/GCE) and bare GCE. ZA-AcB/GCE, ZA/GCE and GCE were subsequently used to investigate the electrochemical behaviour of acetaminophen (AC) in acidic, neutral and alkaline pHs. The results demonstrate a good electrocatalytic property toward AC at composite film GCE in all these electrolytes compared to bare GCE and confirm the dependence of the electrochemical reaction mechanism of AC on the electrolyte’s pHs. Under optimal conditions, ZA-AcB/GCE exhibited higher sensitivity and selectivity toward both analytes taken individually or simultaneously within large concentration range: 0.5–89 µM for AC and 5–99 µM for caffeine (CAF) with the respective limit of detection of 0.38 and 0.82 µM. The developed sensors were applied successfully in the quantification of the both analytes in pharmaceutical tablets.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Renner B, Clarke G, Grattan T, Beisel A, Mueller C, Werner U et al (2007) Caffeine accelerates absorption and enhances the analgesic effect of acetaminophen. J Clin Pharmacol 47(6):715–726

    Article  CAS  PubMed  Google Scholar 

  2. Amiri-Aref M, Raoof JB, Ojani R (2014) A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sens Actuators, B Chem 192:634–641. https://doi.org/10.1016/j.snb.2013.11.006

    Article  CAS  Google Scholar 

  3. Roberts LI (2001) Analgesic-antipyretic and anti-inflammatory agents and drugs employed in the treatment of gout. Goodman & Gilman’s the pharmacological basis of therapeutics

  4. Rashwan WA (2009) The efficacy of acetaminophen–caffeine compared to ibuprofen in the control of postoperative pain after periodontal surgery: a crossover pilot study. J Periodontol 80(6):945–952

    Article  CAS  PubMed  Google Scholar 

  5. Abou-Atme YS, Melis M, Zawawi KH (2019) Efficacy and safety of acetaminophen and caffeine for the management of acute dental pain: a systematic review. Saudi Dent J 31(4):417–423. https://doi.org/10.1016/j.sdentj.2019.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  6. Manchikanti L, Fellows SHB, Janata JW, Pampati V, Grider JS, Boswell MV (2012) Opioid epidemic in the United States. Pain physician 15(3S):ES9

    Article  PubMed  Google Scholar 

  7. Schachtel BP, Fillingim JM, Lane AC, Thoden WR, Baybutt RI (1991) Caffeine as an analgesic adjuvant. A double-blind study comparing aspirin with caffeine to aspirin and placebo in patients with sore throat. Arch Intern Med 151(4):733–737. https://doi.org/10.1001/archinte.151.4.733

    Article  CAS  PubMed  Google Scholar 

  8. Weiser TW (2022) Chapter 7 - Caffeine as analgesic adjuvant. In: Rajendram R, Patel VB, Preedy VR, Martin CR (eds) Treatments, mechanisms, and adverse reactions of anesthetics and analgesics. Academic Press, Cambridge, pp 63–72

    Chapter  Google Scholar 

  9. Alam P, Shakeel F, Ali A, Alqarni MH, Foudah AI, Aljarba TM et al (2022) Simultaneous determination of caffeine and paracetamol in commercial formulations using greener normal-phase and reversed-phase hptlc methods: a contrast of validation parameters. Molecules. https://doi.org/10.3390/molecules27020405

    Article  PubMed  PubMed Central  Google Scholar 

  10. Khoshayand MR, Abdollahi H, Shariatpanahi M, Saadatfard A, Mohammadi A (2008) Simultaneous spectrophotometric determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by chemometric methods. Spectrochim Acta A Mol Biomol Spectrosc 70(3):491–499. https://doi.org/10.1016/j.saa.2007.07.033

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yang S, Yang R, Li G, Qu L, Li J, Yu L (2010) Nafion/multi-wall carbon nanotubes composite film coated glassy carbon electrode for sensitive determination of caffeine. J Electroanal Chem 639(1):77–82. https://doi.org/10.1016/j.jelechem.2009.11.025

    Article  CAS  Google Scholar 

  12. Martínez-Huitle C, Fernandes NS, Ferro S, De Battisti A, Quiroz M (2010) Fabrication and application of Nafion®-modified boron-doped diamond electrode as sensor for detecting caffeine. Diam Relat Mater 19(10):1188–1193

    Article  ADS  Google Scholar 

  13. Yang G, Wang L, Jia J, Zhou D, Li D (2012) Chemically modified glassy carbon electrode for electrochemical sensing paracetamol in acidic solution. J Solid State Electrochem 16(9):2967–2977. https://doi.org/10.1007/s10008-012-1713-8

    Article  CAS  Google Scholar 

  14. Rolison DR (1994) The intersection of electrochemistry with zeolite science. Studies in surface science and catalysis, vol 85. Elsevier, Amsterdam, pp 543–586

    Google Scholar 

  15. Walcarius A (1999) Zeolite-modified electrodes in electroanalytical chemistry. Anal Chim Acta 384(1):1–16. https://doi.org/10.1016/S0003-2670(98)00849-6

    Article  CAS  Google Scholar 

  16. Gemborys HA, Shaw BR (1986) Electrochemical behavior of methyl viologen in zeolite particle films. J Electroanal Chem Interfacial Electrochem 208(1):95–107. https://doi.org/10.1016/0022-0728(86)90298-6

    Article  CAS  Google Scholar 

  17. Li J-W, Calzaferri G (1993) Silver zeolite 4A modified electrodes: intrazeolite effect. J Chem Soc Chem Commun 18:1430–1432. https://doi.org/10.1039/C39930001430

    Article  Google Scholar 

  18. Shaw BR, Creasy KE, Lanczycki CJ, Sargeant JA, Tirhado M (1988) Voltammetric response of zeolite-modified electrodes. J Electrochem Soc 135(4):869–876. https://doi.org/10.1149/1.2095814

    Article  CAS  Google Scholar 

  19. Thatikayala D, Noori MT, Min B (2023) Zeolite-modified electrodes for electrochemical sensing of heavy metal ions—progress and future directions. Mater Today Chem 29:101412. https://doi.org/10.1016/j.mtchem.2023.101412

    Article  CAS  Google Scholar 

  20. Liu X, Dai L (2016) Carbon-based metal-free catalysts. Nat Rev Mater 1(11):16064. https://doi.org/10.1038/natrevmats.2016.64

    Article  ADS  CAS  Google Scholar 

  21. İncebay H, Saylakci R (2021) Voltammetric determination of neotame by using chitosan/nickelnanoparticles/multi walled carbon nanotubes biocomposite as a modifier. Electroanalysis 33(6):1451–1460. https://doi.org/10.1002/elan.202100021

    Article  CAS  Google Scholar 

  22. Saylakcı R, Incebay H (2021) An electrochemical platform of tannic acid and carbon nanotubes for the sensitive determination of the antipsychotic medication clozapine in pharmaceutical and biological samples. J Electroanal Chem 898:115638. https://doi.org/10.1016/j.jelechem.2021.115638

    Article  CAS  Google Scholar 

  23. Zhang H (2006) Electrochemistry and voltammetric determination of colchicine using an acetylene black-dihexadecyl hydrogen phosphate composite film modified glassy carbon electrode. Bioelectrochemistry 68(2):197–201. https://doi.org/10.1016/j.bioelechem.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  24. Santos AM, Wong A, Cincotto FH, Moraes FC, Fatibello-Filho O (2019) Square-wave adsorptive anodic stripping voltammetric determination of norfloxacin using a glassy carbon electrode modified with carbon black and CdTe quantum dots in a chitosan film. Microchim Acta 186(3):148. https://doi.org/10.1007/s00604-019-3268-1

    Article  CAS  Google Scholar 

  25. Kemmegne-Mbouguen JC, Tchoumi FP (2023) Synthesis of nanozeolites type A and X from quartz-rich Cameroonian kaolin: application to the modification of carbon paste electrode for acetaminophen and epinine electrochemical sensing. J Solid State Electrochem. https://doi.org/10.1007/s10008-022-05355-z

    Article  Google Scholar 

  26. Huang K-J, Zhang J-Z, Jia Y-L, Xing K, Liu Y-M (2015) Acetylene black incorporated layered copper sulfide nanosheets for high-performance supercapacitor. J Alloy Compd 641:119–126. https://doi.org/10.1016/j.jallcom.2015.04.075

    Article  CAS  Google Scholar 

  27. Khoramzadeh E, Mofarahi M, Chung K, Lee C-H (2022) Equilibrium adsorption and kinetic study of CO2 and N2 on synthesized carbon Black-Zeolite composite. Sep Purif Technol 280:119917. https://doi.org/10.1016/j.seppur.2021.119917

    Article  CAS  Google Scholar 

  28. Schmidt I, Madsen C, Jacobsen CJH (2000) Confined space synthesis. A novel route to nanosized zeolites. Inorg Chem 39(11):2279–2283. https://doi.org/10.1021/ic991280q

    Article  CAS  PubMed  Google Scholar 

  29. Miao L-X, Wang W-K, Wang A-B, Yuan K-G, Yang Y-S (2013) A high sulfur content composite with core–shell structure as cathode material for Li–S batteries. J Mater Chem A 1(38):11659–11664. https://doi.org/10.1039/C3TA12079A

    Article  CAS  Google Scholar 

  30. Andrade-Guel M, Ávila-Orta CA, Cadenas-Pliego G, Cabello-Alvarado CJ, Pérez-Alvarez M, Reyes-Rodríguez P et al (2020) Synthesis of nylon 6/modified carbon black nanocomposites for application in uric acid adsorption. Materials 13(22):5173

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Enríquez E, Fernández JF, de la Rubia MA (2012) Highly conductive coatings of carbon black/silica composites obtained by a sol–gel process. Carbon 50(12):4409–4417. https://doi.org/10.1016/j.carbon.2012.05.019

    Article  CAS  Google Scholar 

  32. Yu Y, Xiong G, Li C, Xiao F-S (2001) Characterization of aluminosilicate zeolites by UV Raman spectroscopy. Microporous Mesoporous Mater 46(1):23–34. https://doi.org/10.1016/S1387-1811(01)00271-2

    Article  CAS  Google Scholar 

  33. Huang Y, Jiang Z (1997) Vibrational spectra of completely siliceous zeolite A. Microporous Mater 12(4):341–345. https://doi.org/10.1016/S0927-6513(97)00082-5

    Article  CAS  Google Scholar 

  34. Bärtsch M, Bornhauser P, Calzaferri G, Imhof R (1994) Vibrational structure of zeolite A. In: Weitkamp J, Karge HG, Pfeifer H, Hölderich W (eds) Studies in surface science and catalysis, vol 84. Elsevier, Amsterdam, pp 2089–2098

    Google Scholar 

  35. Nguena KLT, Fotsop CG, Ngomade SBL, Tamo AK, Madu CA, Ezema F et al (2023) Mathematical modeling approach for the green synthesis of high-performance nanoporous zeolites Na-X optimized for water vapor sorption. Mater Today Commun 37:107406. https://doi.org/10.1016/j.mtcomm.2023.107406

    Article  CAS  Google Scholar 

  36. Chen X, Wang Y, Wang C, Xu J, Li T, Yue Y et al (2023) Synthesis of NaA zeolite via the mesoscale reorganization of submolten salt depolymerized kaolin: a mechanistic study. Chem Eng J 454:140243. https://doi.org/10.1016/j.cej.2022.140243

    Article  CAS  Google Scholar 

  37. Novembre D, Di Sabatino B, Gimeno D, Pace C (2011) Synthesis and characterization of Na-X, Na-A and Na-P zeolites and hydroxysodalite from metakaolinite. Clay Miner 46(3):339–354

    Article  ADS  CAS  Google Scholar 

  38. Wang C, Yuan R, Chai Y, Chen S, Zhang Y, Hu F et al (2012) Non-covalent iron(III)-porphyrin functionalized multi-walled carbon nanotubes for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Electrochim Acta 62:109–115. https://doi.org/10.1016/j.electacta.2011.11.115

    Article  CAS  Google Scholar 

  39. Nematollahi D, Shayani-Jam H, Alimoradi M, Niroomand S (2009) Electrochemical oxidation of acetaminophen in aqueous solutions: Kinetic evaluation of hydrolysis, hydroxylation and dimerization processes. Electrochim Acta 54(28):7407–7415. https://doi.org/10.1016/j.electacta.2009.07.077

    Article  CAS  Google Scholar 

  40. Walcarius A (1996) Zeolite-modified electrodes: analytical applications and prospects. Electroanalysis 8(11):971–986

    Article  CAS  Google Scholar 

  41. Fekry A, Shehata M, Azab S, Walcarius A (2020) Voltammetric detection of caffeine in pharmacological and beverages samples based on simple nano-Co (II, III) oxide modified carbon paste electrode in aqueous and micellar media. Sens Actuators B Chem 302:127172

    Article  CAS  Google Scholar 

  42. Kalaiyarasi J, Meenakshi S, Gopinath SCB, Pandian K (2017) Mediator-free simultaneous determination of acetaminophen and caffeine using a glassy carbon electrode modified with a nanotubular clay. Microchim Acta 184(11):4485–4494. https://doi.org/10.1007/s00604-017-2483-x

    Article  CAS  Google Scholar 

  43. Kemmegne-Mbouguen JC, Angnes L (2015) Simultaneous quantification of ascorbic acid, uric acid and nitrite using a clay/porphyrin modified electrode. Sens Actuators, B Chem 212:464–471. https://doi.org/10.1016/j.snb.2015.02.046

    Article  CAS  Google Scholar 

  44. Chitravathi S, Munichandraiah N (2016) Voltammetric determination of paracetamol, tramadol and caffeine using poly(Nile blue) modified glassy carbon electrode. J Electroanal Chem 764:93–103. https://doi.org/10.1016/j.jelechem.2016.01.021

    Article  CAS  Google Scholar 

  45. Minh TT, Phong NH, Van Duc H, Khieu DQ (2018) Microwave synthesis and voltammetric simultaneous determination of paracetamol and caffeine using an MOF-199-based electrode. J Mater Sci 53(4):2453–2471

    Article  ADS  CAS  Google Scholar 

  46. Spãtaru N, Sarada BV, Tryk DA, Fujishima A (2002) Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical application. Electroanal: Int J Devot Fundam Pract Asp Electroanal 14(11):721–728

    Article  Google Scholar 

  47. Tefera M, Geto A, Tessema M, Admassie S (2016) Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode. Food Chem 210:156–162. https://doi.org/10.1016/j.foodchem.2016.04.106

    Article  CAS  PubMed  Google Scholar 

  48. Feyisa TY, Kitte SA, Yenealem D, Gebretsadik G (2020) Simultaneous electrochemical determination of paracetamol and caffeine using activated glassy carbon electrode. Anal Bioanal Electrochem 12:93–106

    CAS  Google Scholar 

  49. Mulyasuryani A, Tjahjanto RT, Andawiyah RA (2019) Simultaneous voltammetric detection of acetaminophen and caffeine base on cassava starch—Fe3O4 nanoparticles modified glassy carbon electrode. Chemosensors 7(4):49

    Article  CAS  Google Scholar 

  50. Murugan E, Kumar K (2019) Fabrication of SnS/TiO2@GO composite coated glassy carbon electrode for concomitant determination of paracetamol, tryptophan, and caffeine in pharmaceutical formulations. Anal Chem 91(9):5667–5676. https://doi.org/10.1021/acs.analchem.8b05531

    Article  CAS  PubMed  Google Scholar 

  51. Xiong X-Q, Huang K-J, Xu C-X, Jin C-X, Zhai Q-G (2013) Glassy carbon electrode modified with poly (taurine)/TiO2-graphene composite film for determination of acetaminophen and caffeine. Chem Ind Chem Eng Q/CICEQ 19(3):359–368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Royal Society ACBI programme (Grant AQ150029) is gratefully acknowledged

Author information

Authors and Affiliations

Authors

Contributions

F. P. T.: Conceptualization, Formal analysis, Methodology, Investigation, Validation, Writing original draft, Writing-review and editing A. K. T.: Investigation, Formal analysis, Writing-review and editing G. D.: Formal analysis, Investigation, Writing-review and editing C. G. F.: Formal analysis, Investigation, Writing-review and editing J.C.K.-M.: Conceptualization, Resources, Visualization, Writing-review and editing, Project administration, Funding acquisition E.N.: Supervision, Resources, Funding acquisition, Writing-review and editing

Corresponding author

Correspondence to Justin Claude Kemmegne-Mbouguen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2109 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchoumi, F.P., Tamo, A.K., Doungmo, G. et al. Polymer-free nanocomposite from zeolite and acetylene carbon black as glassy carbon modifier platform for simultaneous electrochemical quantification of acetaminophen and caffeine. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02076-1

Keywords

Navigation