Skip to main content
Log in

Photoelectrochemical sensing of isoniazid and streptomycin based on metal Bi-doped BiOI microspheres grown on book-shape layers of Ti3C2 heterostructures

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Isoniazid and streptomycin are vital drugs for treating tuberculosis, which are utilized as efficient anti-tuberculosis agents. This paper presents a novel visible-light-driven composite photocatalyst Ti3C2/Bi/BiOI, which was built from Ti3C2 nanosheets and Bi/BiOI microspheres. Photoelectrochemical (PEC) sensors based on Ti3C2/Bi/BiOI were synthesized for isoniazid identification, which showed a linear concentration range of 0.1–125 μM with a detection limit of 0.05 μM (S/N = 3). Moreover, we designed a PEC aptasensors based on aptamer/Ti3C2/Bi/BiOI to detect streptomycin in 0.1 M PBS covering the electron donor isoniazid, because the isoniazid consumes photogenerated holes thus increasing the photocurrent effectively and preventing photogenerated electron–hole pairs from being recombined. Furthermore, PEC aptasensors based on aptamer/Ti3C2/Bi/BiOI were synthesized for streptomycin identification, which exhibited a linear concentration range of 0.01–1000 nM with a detection limit of 2.3 × 10-3 nM (S/N = 3), and are well stable in streptomycin sensing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. You FH, Wei J, Cheng Y, Wen ZR, Ding CF, Hao N, Wang K (2021) Selective and sensitive photoelectrochemical aptasensor for streptomycin detection based on Bi4VO8Br/Ti3C2 nanohybrids. J Hazard Mater 414:125539

    Article  CAS  PubMed  Google Scholar 

  2. Sancho E, Chinchill FG, Calvo EB (2022) Determination of streptomycin and doxycycline using LC/MS towards an effective treatment against an experimental Brucella abortus infection in mice. J Microbiol Methods 194:106436

    Article  CAS  PubMed  Google Scholar 

  3. Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Abnous K (2016) A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem 203:145–149

    Article  CAS  PubMed  Google Scholar 

  4. Zhu Q, Liu LH, Wang RY, Zhou XH (2021) A split aptamer (SPA)-based sandwich-type biosensor for facile and rapid detection of streptomycin. J Hazard Mater 403:123941

    Article  CAS  PubMed  Google Scholar 

  5. Chen YJ, Zhang SP, Hong ZS, Lin YY, Dai H (2019) A mimotope peptide-based dual-signal readout competitive enzyme-linked immunoassay for non-toxic detection of zearalenone. J Mater Chem B 7:6972–6980

    Article  CAS  PubMed  Google Scholar 

  6. Emrani AS, Danesh NM, Lavaee P, Ramezani M, Abnous K, Taghdisi SM (2016) Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem 190:115–121

    Article  CAS  PubMed  Google Scholar 

  7. Coban AY, Akbal AU, Ceyhan I (2019) A new colorimetric method for rapid detection of ethambutol and streptomycin resistance in Mycobacterium tuberculosis: crystal violet decolorization assay (CVDA). Antonie Van Leeuwenhoek 112:679–685

    Article  CAS  PubMed  Google Scholar 

  8. Wang JP, Zhang HY, Sheng W, Liu W, Zheng LL, Zhang XZ, Wang S (2013) Determination of streptomycin residues in animal-derived foods by a reliable and accurate enzyme-linked immunosorbent assay. Anal Methods 5:4430–4435

    Article  CAS  Google Scholar 

  9. Mishr GK, Sharm A, Bhand S (2015) Ultrasensitive detection of streptomycin using flow injection analysis-electrochemical quartz crystal nanobalance (FIA-EQCN) biosensor. Biosens Bioelectron 67:532–539

    Article  Google Scholar 

  10. He XY, Han HM, Liu LQ, Shi WY, Lu X, Dong JD, Yang W, Lu XQ (2019) Self-assembled microgels for sensitive and low-fouling detection of streptomycin in complex media. ACS Appl Mater Interfaces 11(14):13676–13684

    Article  CAS  PubMed  Google Scholar 

  11. Wang ZL, Sun YZ, Liang DM, Zeng YY, He S, Mari GM, Peng T, Jiang HY (2020) Highly sensitive chromatographic time-resolved fluoroimmunoassay for rapid onsite detection of streptomycin in milk. J Dairy Sci 103:8750–8760

    Article  CAS  PubMed  Google Scholar 

  12. Wei DL, Meng H, Zeng K, Huang Z (2019) Visual dual dot immunoassay for the simultaneous detection of kanamycin and streptomycin in milk. Anal Methods 11:70–77

    Article  CAS  Google Scholar 

  13. Hu R, Ren XX, Song P, Wang AJ, Mei LP, Feng JJ (2023) Hollow cage-like PtCu nanozyme-regulated photo-activity of porous CdIn2S4/SnO2 heterojunctions for ultrasensitive PEC sensing of streptomycin. Biosens Bioelectron 236:115425

    Article  CAS  PubMed  Google Scholar 

  14. Song P, Wang M, Xue YD, Wang AJ, Mei LP, Feng JJ (2022) Bimetallic PtNi nanozyme-driven dual-amplified photoelectrochemical aptasensor for ultrasensitive detection of sulfamethazine based on Z-scheme heterostructured Co9S8@In-CdS nanotubes. Sensors Actuators B 371:132519

    Article  CAS  Google Scholar 

  15. Xin FF, Song P, Fang KM (2023) Label-free “signal-off” PEC aptasensor for determination of kanamycin based on 3D nanoflower-like FeIn2S4/CdS Z-scheme heterostructures. Microchim Acta 190:351

    Article  CAS  Google Scholar 

  16. Dai H, Gong LS, Zhang SP, Xu GF, Li YL, Hong ZS, Lin YY (2016) All-in-one bioprobe devised with hierarchical-ordered magnetic NiCo2O4 superstructure for ultrasensitive dual-readout immunosensor for logic diagnosis of tumor marker. Biosens Bioelectron 77:928–935

    Article  CAS  PubMed  Google Scholar 

  17. Dai H, Zhang SP, Hong ZS, Lin YY (2016) A potentiometric addressable photoelectrochemical biosensor for sensitive detection of two biomarkers. Anal Chem 88:9532–9538

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Zhou YL, Yin HS, Li F, Li H, Guo RZ, Han YH, Ai SY (2020) Photoelectrochemical biosensor for histone acetyltransferase detection based on ZnO quantum dots inhibited photoactivity of BiOI nanoflower. Sensors Actuators B Chem 307:127633

    Article  Google Scholar 

  19. Yan PC, Xu L, Cheng XM, Qian JC, Li HN, Xia JX, Zhang Q, Hua MQ, Li HM (2017) Photoelectrochemical monitoring of phenol by metallic Bi self-doping BiOI composites with enhanced photoelectrochemical performance. J Electroanal Chem 804:64–71

    Article  CAS  Google Scholar 

  20. Dai H, Chen SH, Li YL, Zeng BS, Zhang SP, Hong ZS, Lin YY (2017) Photoelectrochemical biosensor constructed using TiO2 mesocrystals based multipurpose matrix for trypsin detection. Biosens Bioelectron 92:687–694

    Article  CAS  PubMed  Google Scholar 

  21. Li MY, He R, Wang S (2019) Visible light driven photoelectrochemical sensor for chromium(VI) by using BiOI microspheres decorated with metallic bismuth. Microchim Acta 186:345

    Article  Google Scholar 

  22. Yang LQ, Zhao ZJ, Cai ZY (2020) Enhancing visible-light-enhanced photoelectrochemical activity of BiOI microspheres for 4-chlorophenol detection by promoting with Bi surface plasmon resonance (SPR) and multi-walled carbon nanotubes. SN Appl Sci 2:1214

    Article  CAS  Google Scholar 

  23. Liu L, Yao Y, Ma KJ, Shangguan CJ, Jiao SL, Zhu SY, Xu XX (2021) Ultrasensitive photoelectrochemical detection of cancer-related miRNA-141 by carrier recombination inhibition in hierarchical Ti3C2@ReS2. Sensor Actuat B-Chem 331:129470

    Article  CAS  Google Scholar 

  24. Liu ST, Liu XP, Chen JS, Mao CJ, Jin BK (2020) Highly sensitive photoelectrochemical biosensor for microRNA159c detection based on a Ti3C2:CdS nanocomposite of breast cancer. Biosens Bioelectron 165:112416

    Article  CAS  PubMed  Google Scholar 

  25. Sun ZW, Tong Y, Zhao L, Li J, Gao FC, Wang CX, Li H, Du LT, Jiang YY (2022) MoS2@Ti3C2 nanohybrid-based photoelectrochemical biosensor: a platform for ultrasensitive detection of cancer biomarker exosomal miRNA. Talanta 238:123077

    Article  CAS  PubMed  Google Scholar 

  26. Du XJ, Du WH, Sun J, Jiang D (2022) Self-powered photoelectrochemical sensor for chlorpyrifos detection in fruit and vegetables based on metal–ligand charge transfer effect by Ti3C2 based Schottky junction. Food Chem 385:132731

    Article  CAS  PubMed  Google Scholar 

  27. Meng Y, Qin N, Hun X (2022) ZnSe nanodisks: Ti3C2 MXenes-modified electrode for nucleic acid liquid biopsy with photoelectrochemical strategy. Microchim Acta 189:2

    Article  CAS  Google Scholar 

  28. Chen X, Li J, Pan GC, Xu W, Zhu JY, Zhou DL, Li DY, Chen C, Lu GY, Song HW (2019) Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sensor Actuat B-Chem 289:131–137

    Article  CAS  Google Scholar 

  29. Okoth OK, Yan K, Zhang JD (2017) Mo-doped BiVO4 and graphene nanocomposites with enhanced photoelectrochemical performance for aptasensing of streptomycin. Carbon 120:194–202

    Article  CAS  Google Scholar 

  30. Liao XL, Li TT, Ren HT, Mao ZY, Zhang XF, Lin JH, Lou CW (2022) Photoelectrochemical aptasensor driven by visible-light based on BiFeO3@TiO2 heterostructure for microcystin-LR detection. Microchem J 176:107201

    Article  CAS  Google Scholar 

  31. Shi YQ, Xiong XY, Ding SP, Liu XF, Jiang QQ, Hu JC (2018) In-situ topotactic synthesis and photocatalytic activity of plate-like BiOCl/2D networks Bi2S3 heterostructures. Appl Catal B-Environ 220:570–580

    Article  CAS  Google Scholar 

  32. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556

    Article  CAS  Google Scholar 

  33. Wu XQ, Zhao J, Wang LP, Han MM, Zhang ML, Wang HB, Huang H, Liu Y, Kang ZH (2017) Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl Catal B-Environ 206:501–509

    Article  CAS  Google Scholar 

  34. Hytch MJ, Snoeck E, Kilaas R (1998) Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74:131–146

    Article  CAS  Google Scholar 

  35. Deng H, Li ZJ, Wang L, Yuan LY, Lan JH, Chang ZY, Chai ZF, Shi WQ (2019) Nanolayered Ti3C2 and SrTiO3 composites for photocatalytic reduction and removal of Uranium (VI). ACS Appl Nano Mater 2:2283–2294

    Article  CAS  Google Scholar 

  36. Shinde PV, Mane P, Chakraborty B, Rout CS (2021) Spinel NiFe2O4 nanoparticles decorated 2D Ti3C2 MXene sheets for efficient water splitting: experiments and theories. J Colloid Interface Sci 602:232–241

    Article  CAS  PubMed  Google Scholar 

  37. Wu SS, Su YM, Zhu Y, Zhang YM, Zhu MS (2020) In-situ growing Bi/BiOCl microspheres on Ti3C2 nanosheets for upgrading visible-light-driven photocatalytic activity. Appl Surf Sci 520:146339

    Article  CAS  Google Scholar 

  38. Xu XX, Liu D, Luo LJ, Li LB, Wang K, You TY (2017) Photoelectrochemical aptasensor based on CdTe quantum dots-single walled carbon nanohorns for the sensitive detection of streptomycin. Sensor Actuat B-Chem 251:564–571

    Article  CAS  Google Scholar 

  39. Xu YH, Ding LJ, Wen ZR, Zhang M, Jiang D, Guo YS, Ding CF, Wang K (2020) Core-shell LaFeO3@g-C3N4 p-n heterostructure with improved photoelectrochemical performance for fabricating streptomycin aptasensor. Appl Surf Sci 511:145571

    Article  CAS  Google Scholar 

  40. Liu D, Xu XX, Shen XL, Luo LJ, Li LB, Yan XH, You TY (2020) Construction of the direct Z-scheme CdTe/APTES-WO3 heterostructure by interface engineering for cathodic “signal-off” photoelectrochemical aptasensing of streptomycin at sub-nanomole level. Sensor Actuat B-Chem 305:127210

    Article  CAS  Google Scholar 

  41. Aghajari R, Azadbakht A (2018) Amplified detection of streptomycin using aptamer-conjugated palladium nanoparticles decorated on chitosan-carbon nanotube. Anal Biochem 547:57–65

    Article  CAS  PubMed  Google Scholar 

  42. Li LL, Liu XQ, Yang LW, Zhang S, Zheng HJ, Tang YF, Wong DKY (2019) Amplified oxygen reduction signal at a Pt-Sn-modified TiO2 nanocomposite on an electrochemical aptasensor. Biosens Bioelectron 142:111525

    Article  CAS  PubMed  Google Scholar 

  43. Chen Y, Yin HS, Li F, Zhou J, Wang LS, Wang J, Ai SY (2020) Polydopamine-sensitized WS2/black-TiO2 heterojunction for histone acetyltransferase detection with enhanced visible-light-driven photoelectrochemical activity. Chem Eng J 393:124707

    Article  CAS  Google Scholar 

  44. Luo YN, Tan XC, Young DJ, Chen QY, Huang YH, Feng DF, Ai CH, Mi Y (2020) A photoelectrochemical aptasensor for the sensitive detection of streptomycin based on a TiO2/BiOI/BiOBr heterostructure. Anal Chim Acta 1115:33–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Key scientific and technological projects in Henan Province (202102310036).

Author information

Authors and Affiliations

Authors

Contributions

Chengzhi Ding and Shengnan Ma: investigation, writing-original draft. Shuohao Wang, Huihui Chen and Zhi Li: formal analysis, experiment and editing, funding acquisition. Li Wei, Shengnan Ma and Chengzhi Ding: formal analysis, conceptualization. Xufeng Guo, Jiao Wang and Li Wei: supervision, funding acquisition and statistical assistance.

Corresponding authors

Correspondence to Xufeng Guo, Jiao Wang or Li Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary file 1

(DOCX 1473 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Ma, S., Wang, S. et al. Photoelectrochemical sensing of isoniazid and streptomycin based on metal Bi-doped BiOI microspheres grown on book-shape layers of Ti3C2 heterostructures. Microchim Acta 191, 260 (2024). https://doi.org/10.1007/s00604-024-06280-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06280-w

Keywords

Navigation