Skip to main content
Log in

Photoelectrochemical biosensor based on DNA aptamers and dual nano-semiconductor heterojunctions for accurate and selective sensing of chloramphenicol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract 

Nanosheets of anatase TiO2 and CdS quantum dots modified with thioglycolic acid (TGA-CdS QDs) were prepared and hierarchically modified on the indium tin oxides (ITO) electrodes. The heterojunction structure is formed to improve the light capture ability and carrier migration, significantly enhancing the sensitivity of photoelectrochemical (PEC) biosensors. Specific DNA sequences labeled with TGA-CdS QDs were placed on the electrodes to prepare a biosensor for the detection of chloramphenicol with ultrahigh selectivity. In addition, the heterojunction structure and the principle of photocurrent signal amplification on the electrode are described in detail. Under the optimal conditions, the photoelectrochemical biosensors showed good reproducibility and stability for chloramphenicol with a linear response in the range 10–10,000 pM and a limit of detection (LOD) of 0.23 pM. Due to the specific recognition of base pairs, the sensor has excellent anti-interference ability in practical applications. An effective method was developed for the accurate detection of antibiotics with far reaching prospects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang B, Liu Z, Yang H, Yang X (2011) Methodological study on magnetic affinity immunoassay for detecting chloramphenicol. Chin J Cell Mol Immunol 27:585–589. https://doi.org/10.13423/j.cnki.cjcmi.006034

    Article  CAS  Google Scholar 

  2. Sun T, Pan H, Mei Y, Zhang P, Zeng D, Liu X, Song S et al (2019) Electrochemical sensor sensitive detection of chloramphenicol based on ionic-liquid-assisted synthesis of de-layered molybdenum disulfide/graphene oxide nanocomposites. J Appl Electrochem 49:261–270. https://doi.org/10.1007/s10800-018-1271-6

  3. Yu MT, Xia T, Bai WC, Ji JY, Wang H, Huang YQ et al (2020) Handheld aptasensor for sandwiched detection of chloramphenicol. Chem Res Chin Univ 36:291–295. https://doi.org/10.1007/s40242-020-9076-7

  4. Zhu Y, Li X, Xu Y, W, L, Yu A, Lai G et al (2021) Intertwined carbon nanotubes and Ag nanowires constructed by simple solution blending as sensitive and stable chloramphenicol sensors. Sensors 21:1220. https://doi.org/10.3390/s21041220

  5. Ben Y, Fu C, Hu M, Liu L, Wong M, Zheng C (2019) Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environ Res 169:483–493. https://doi.org/10.1016/j.envres.2018.11.040

  6. Zhong Y, Chen C, Liu S, Lu C, Liu D, Pan Y et al (2021) A new magnetic adsorbent of eggshell-zeolitic imidazolate framework for highly efficient removal of norfloxacin. Dalton Trans 50:18016–18026. https://doi.org/10.1039/d1dt03020e

  7. Amiripour F, Ghasemi S, Azizi SN (2021) Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal-organic framework for selective detection of chloramphenicol residues in milk and honey. Food Chem 347:129034. https://doi.org/10.1016/j.foodchem.2021.129034

    Article  CAS  Google Scholar 

  8. Navada KK, Kulal A (2019) Enzymatic degradation of chloramphenicol by laccase from Trametes hirsuta and comparison among mediators. Int Biodeterior Biodegrad 138:63–69. https://doi.org/10.1016/j.ibiod.2018.12.012

    Article  CAS  Google Scholar 

  9. Veach BT (2020) Determination of chloramphenicol and nitrofuran metabolites in cobia, croaker, and shrimp using microwave-assisted derivatization, automated SPE, and LC-MS/MS—results from a US Food and Drug Administration Level Three Inter-Laboratory Study. J AOAC Int 103:1043–1051. https://doi.org/10.1093/jaoacint/qsaa019

    Article  Google Scholar 

  10. Shi X, Song S, Sun A, Li D, Wu A, Zhang D (2010) Determination of chloramphenicol residues in foods by ELISA and LC-MS/MS coupled with molecularly imprinted solid phase extraction. Anal Lett 43:2798–2807. https://doi.org/10.1080/00032711003763616

  11. Crofts TS, Sontha P, King AO, Wang B, Biddy BA, Zanolli et al (2019) Discovery and characterization of a nitroreductase capable of conferring bacterial resistance to chloramphenicol. Cell Chem Biol 26:559–570. https://doi.org/10.1016/j.chembiol.2019.01.007

  12. Amelin VG, Volkova NM, Repin NA, Nikeshina TB (2015) Simultaneous determination of residual amounts of amphenicols in food by HPLC with UV-detection. J Anal Chem 70:1282–1287. https://doi.org/10.1134/S1061934815100020

    Article  CAS  Google Scholar 

  13. Ali I, Aboul-Enein HY, Gupta VK, Singh P, Negi U (2009) Analyses of chloramphenicol in biological samples by HPLC. Anal Lett 42:1368–1381. https://doi.org/10.1080/00032710902954482

  14. Li S, Ma X, Pang C, Wang M, Yin G, Xu, Z et al (2021) Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification. Biosens Bioelectron 176:112944. https://doi.org/10.1016/j.bios.2020.112944

  15. Dong B, Li H, Sun J, Mari GM, Ai J, Han D et al (2020) Homogeneous fluorescent immunoassay for the simultaneous detection of chloramphenicol and amantadine via the duplex FRET between carbon dots and WS2 nanosheets. Food Chem 327:127107. https://doi.org/10.1016/j.foodchem.2020.127107

  16. Li W, Chen N, Huang Z, Zeng X, Zhu Y (2019) Switchable hydrophilicity dispersive solvent-based liquid-liquid microextraction coupling to high-performance liquid chromatography for the determination of amphenicols in food products. Food Anal Meth 12:517–525. https://doi.org/10.1007/s12161-018-1382-z

  17. Shen C, Liu S, Li X, Yang M (2019) Electrochemical detection of circulating tumor cells based on DNA generated electrochemical current and rolling circle amplification. Anal Chem 91:11614–11619. https://doi.org/10.1021/acs.analchem.9b01897

    Article  CAS  Google Scholar 

  18. Li X, Shen C, Yang M, Rasooly A (2018) Polycytosine DNA electric-current-generated immunosensor for electrochemical detection of human epidermal growth factor receptor2 (HER2). Anal Chem 90:4764–4769. https://doi.org/10.1021/acs.analchem.8b00023

    Article  CAS  Google Scholar 

  19. Shen C, Zeng K, Luo J, Li X, Yang M, Rasooly A (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89:10264–10269. https://doi.org/10.1021/acs.analchem.7b01747

  20. Bai X, Gao W, Zhou C, Zhao D, Zhang Y, Jia N (2022) Photoelectrochemical determination of diclofenac using oriented single-crystalline TiO2 nanoarray modified with molecularly imprinted polypyrrole. Microchim Acta 189:90. https://doi.org/10.1007/s00604-022-05206-8

  21. Wang Q, Guo H, Wei Y, Xue R, Ma B, Yang W (2020) An ultrahighly sensitive electrochemical biosensor for cytochrome C with surface molecular imprinting based on hybrid nanomaterials. Int J Electrochem Sci 15:990–1004. https://doi.org/10.20964/2020.01.25

  22. Wu ZW, Xie XC, Guo HR, Xia H, Huang KJ (2020) A highly sensitive electrochemical biosensor for protein based on a tetrahedral DNA probe, N- and P-co-doped graphene, and rolling circle amplification. Anal Bioanal Chem 412:915–922. https://doi.org/10.1007/s00216-019-02314-y

  23. Amiri NS, Milani-Hosseini M-R (2019) Fabrication of an eco-friendly ratiometric fluorescence sensor-modified mesoporous-structured epitope-imprinted polymer for highly selective and sensitive determination of cytochrome c in biological samples. Anal Methods 11:5919–5928. https://doi.org/10.1039/c8ay02773k

    Article  CAS  Google Scholar 

  24. Cakiroglu B, Ozacar M (2018) A self-powered photoelectrochemical glucose biosensor based on supercapacitor Co3O4-CNT hybrid on TiO2. Biosens Bioelectron 119:34–41. https://doi.org/10.1016/j.bios.2018.07.049

    Article  CAS  Google Scholar 

  25. Dong S, Yan J, Zhou S, Zhou Q (2022) Mycotoxins detection based on electrochemical approaches. Electroanalysis 34:132–147. https://doi.org/10.1002/elan.202100349

    Article  CAS  Google Scholar 

  26. Liu XP, Chen JS, Mao C, Niu HL, Song JM, Jin BK (2018) A label-free photoelectrochemical biosensor for urokinase-type plasminogen activator detection based on a g-C3N4/CdS nanocomposite. Anal Chim Acta 1025:99–107. https://doi.org/10.1016/j.aca.2018.04.051

  27. Xia LY, Li MJ, Wang HJ, Yuan R, Chai YQ (2019) A novel “signal on” photoelectrochemical strategy based on dual functional hemin for microRNA assay. Chem Commun 55:9721–9724. https://doi.org/10.1039/c9cc04899e

  28. Roxby DN, Rivy H, Gong C, Gong X, Yuan Z, Chang GE et al (2020) Microalgae living sensor for metal ion detection with nanocavity-enhanced photoelectrochemistry. Biosens Bioelectron 165:112420. https://doi.org/10.1016/j.bios.2020.112420

  29. Forzato C, Vida V, Berti F (2020) Biosensors and sensing systems for rapid analysis of phenolic compounds from plants: a comprehensive review. Biosensors-Basel 10:105. https://doi.org/10.3390/bios10090105

    Article  CAS  Google Scholar 

  30. Huixian S, Tianyong Z, Hongliang W, Meng H (2011) Photocatalytic conversion of naphthalene to alpha-naphthol using nanometer-sized TiO2. Chin J Catal 32:46–50. https://doi.org/10.1016/S1872-2067(10)60158-1

  31. Mao J, Yao JN, Wang LN, Liu WS (2008) Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier. J Colloid Interface Sci 319:353–356. https://doi.org/10.1016/j.jcis.2007.10.027

  32. Yao J, Gou X (2016) An investigation of preparation, properties, characterization and the mechanism of zinc blende CdTe/CdS core/shell quantum dots for sensitive and selective detection of trace mercury. J Mater Chem C 4:9856–9863. https://doi.org/10.1039/c6tc02878k

    Article  CAS  Google Scholar 

  33. Hao Q, Wang L, Niu S, Ding C, Luo X (2020) Ratiometric electrogenerated chemiluminescence sensor based on a designed anti-fouling peptide for the detection of carcinoembryonic antigen. Anal Chim Acta 1136:134–140. https://doi.org/10.1016/j.aca.2020.09.033

  34. Ma X, Ma Y, Ejeromedoghene O, Kandawa-Schulz M, Song W, Wang Y (2022) Photoelectrochemical detection of microRNAs based on target-triggered self-assembly of energy band position-matched CdS QDs and C3N4 nanosheets. Microchim Acta 189:65. https://doi.org/10.1007/s00604-022-05168-x

  35. Yao J, Li Y, Xie M, Yang Q, Liu T (2020) The electrochemical behaviors and kinetics of AuNPs/N, S-GQDs composite electrode: A novel label-free amplified BPA aptasensor with extreme sensitivity and selectivity. J Mol Liq 320:114384. https://doi.org/10.1016/j.molliq.2020.114384

  36. Cao K, Chen MM, Chang FY, Cheng YY, Tian LJ, Li F et al (2020) The biosynthesis of cadmium selenide quantum dots by Rhodotorula mucilaginosa PA-1 for photocatalysis. Biochem Eng J 156:107497. https://doi.org/10.1016/j.bej.2020.107497

  37. Meng L, Xiao K, Zhang X, Du C, Chen J (2020) A novel signal-off photoelectrochemical biosensor for M.SssI MTase activity assay based on GQDs@ZIF-8 polyhedra as signal quencher. Biosens Bioelectron 150:111861. https://doi.org/10.1016/j.bios.2019.111861

  38. Gao X, Niu S, Ge J, Luan Q, Jie G (2020) 3D DNA nanosphere-based photoelectrochemical biosensor combined with multiple enzyme-free amplification for ultrasensitive detection of cancer biomarkers. Biosens Bioelectron 147:111778. https://doi.org/10.1016/j.bios.2019.111778

  39. Li J, Yuan H, Li J, Zhang W, Liu Y, Liu N et al (2021) The significant role of the chemically bonded interfaces in BiVO4/ZnO heterostructures for photoelectrochemical water splitting. Appl Catal B-Environ 285:119833. https://doi.org/10.1016/j.apcatb.2020.119833

  40. Dey T, Ghorai A, Das S, Ray SK (2022) Solvent-engineered performance improvement of graphene quantum dot sensitized solar cells with nitrogen functionalized GQD photosensitizers. Sol Energy 236:17–25. https://doi.org/10.1016/j.solener.2022.02.048

    Article  CAS  Google Scholar 

  41. Zhu Y, Xu Z, Gao J, Ji W, Zhang J (2020) An antibody-aptamer sandwich cathodic photoelectrochemical biosensor for the detection of progesterone. Biosens Bioelectron 160:112210. https://doi.org/10.1016/j.bios.2020.112210

  42. Cheng W, Zheng Z, Yang J, Chen M, Yao Q, Chen Y et al (2019) The visible light-driven and self-powered photoelectrochemical biosensor for organophosphate pesticides detection based on nitrogen doped carbon quantum dots for the signal amplification. Electrochim Acta 296:627–636. https://doi.org/10.1016/j.electacta.2018.11.086

  43. Chang J, Lv W, Wu J, Li H, Li F (2021) Simultaneous photoelectrochemical detection of dual microRNAs by capturing CdS quantum dots and methylene blue based on target-initiated strand displaced amplification. Chin Chem Lett 32:775–778. https://doi.org/10.1016/j.cclet.2020.05.041

  44. Xiao K, Meng L, Du C, Zhang Q, Yu Q, Zhang X et al (2021) A label-free photoelectrochemical biosensor with near-zero-background noise for protein kinase A activity assay based on porous ZrO2/CdS octahedra. Sens Actuator B-Chem 328:129096. https://doi.org/10.1016/j.snb.2020.129096

  45. Yao J, Wang L, Zhou H, Xie Z, Zeng X, Liu C (2022) Cuprous oxide coated silver/graphitic carbon nitride/cadmium sulfide nanocomposite heterostructure: specific recognition of carcinoembryonic antigen through sandwich-type mechanism. J Colloid Interface Sci 616:858–870. https://doi.org/10.1016/j.jcis.2021.11.103

  46. Chen X, Wu W, Zhang Q, Wang C, Fan Y, Wu H et al (2022) Z-scheme Bi2O3/CuBi2O4 heterojunction enabled sensitive photoelectrochemical detection of aflatoxin B1 for health care, the environment, and food. Biosens Bioelectron 214:114523. https://doi.org/10.1016/j.bios.2022.114523

  47. Cui L, Shen J, Li CC, Cui PP, Luo X, Wang X et al (2021) Construction of a dye-sensitized and gold plasmon-enhanced cathodic photoelectrochemical biosensor for methyltransferase activity assay. Anal Chem 93:10310–10316. https://doi.org/10.1021/acs.analchem.1c01797

  48. Yang J, Fu S, Luo F, Guo L, Qiu B, Lin Z (2021) Homogeneous photoelectrochemical biosensor for microRNA based on target-responsive hydrogel coupled with exonuclease III and nicking endonuclease Nb.BbvCI assistant cascaded amplification strategy. Microchim Acta 188:267. https://doi.org/10.1007/s00604-021-04935-6

  49. Tu YP, Wang HH, Long D, Yuan R, Chai YQ (2022) Highly sensitive photoelectrochemical biosensor based on Au nanoparticles sensitized zinc selenide quantum dots for DNA detection. Sens Actuator B-Chem 357:131255. https://doi.org/10.1016/j.snb.2021.131255

  50. Shan J, Li R, Yan K, Zhu Y, Zhang J (2016) In situ anodic stripping of Cd(II) from CdS quantum dots for electrochemical sensing of ciprofloxacin. Sens Actuator B-Chem 237:75–80. https://doi.org/10.1016/j.snb.2016.06.066

  51. Joo J, Ye Y, Kim D, Lee J, Jeon S (2013) Magnetically recoverable hybrid TiO2 nanocrystal clusters with enhanced photocatalytic activity. Mater Lett 93:141–144. https://doi.org/10.1016/j.matlet.2012.10.067

  52. Noipa T, Martwiset S, Butwong N, Tuntulani T, Ngeontae W (2011) Enhancement of the fluorescence quenching efficiency of DPPH center dot on colloidal nanocrystalline quantum dots in aqueous micelles. J Fluoresc 21:1941–1949. https://doi.org/10.1007/s10895-011-0893-4

  53. Liu S, Wang H, Cheng Z, Liu H (2016) Hexametaphosphate-capped quantum dots as fluorescent probes for detection of calcium ion and fluoride. Sens Actuator B-Chem 232:306–312. https://doi.org/10.1016/j.snb.2016.03.077

  54. Wang X, Liu Y, Ding B, Li H, Zhu X, Xia M et al (2018) Influence of the addition of nano-TiO2 and ZnO on the sensing performance of micro-ZnSnO3 ethanol sensors under UV illumination. Sens Actuator B-Chem 276:211–221. https://doi.org/10.1016/j.snb.2018.08.114

  55. Smirnov MS (2021) Temperature features of non-radiative energy transfer in hybrid associates of CdS/TGA quantum dots with methylene blue molecules. J Nanopart Res 23:59. https://doi.org/10.1007/s11051-020-05065-5

    Article  Google Scholar 

  56. Kathalingam A, Valanarasu S, Ahamad T, Alshehri SM, Kim H-S (2021) Spray pressure variation effect on the properties of CdS thin films for photodetector applications. Ceram Int 47:7608–7616. https://doi.org/10.1016/j.ceramint.2020.11.100

  57. Chang H, Lv J, Zhang H, Zhang B, Wei W, Qiao Y (2017) Photoresponsive colorimetric immunoassay based on chitosan modified AgI/TiO2 heterojunction for highly sensitive chloramphenicol detection. Biosens Bioelectron 87:579–586. https://doi.org/10.1016/j.bios.2016.09.002

  58. Qin X, Wang Q, Geng L, Shu X, Wang Y (2019) A “signal-on” photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO2 nanotube arrays for sensitive detection of chloramphenicol. Talanta 197:28–35. https://doi.org/10.1016/j.talanta.2018.12.103

  59. Tu C, Dai Y, Zhang Y, Wang W, Wu L (2020) A simple fluorescent strategy based on triple-helix molecular switch for sensitive detection of chloramphenicol. Spectroc Acta Pt A-Molec Biomolec Spectr 224:117415. https://doi.org/10.1016/j.saa.2019.117415

  60. Yu HL, Zhou YW, Liu LQ, Zhang MY, Wang JB, Chen XY et al (2021) Simple development of Kelvin probe using a pA meter and its application to study the photocatalytic activities of Ag/TiO2 and Ag2O/TiO2 coated polyester fabrics. Appl Surf Sci 535:147653. https://doi.org/10.1016/j.apsusc.2020.147653

  61. Wu S, Li X, Tian Y, Lin Y, Hu YH (2021) Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light. Chem Eng J 406:126747. https://doi.org/10.1016/j.cej.2020.126747

  62. Maver K, Arcon I, Fanetti M, Emin S, Valant M, Stangar UL (2021) Improved photocatalytic activity of anatase-rutile nanocomposites induced by low-temperature sol-gel Sn-modification of TiO2. Catal Today 361:124–129. https://doi.org/10.1016/j.cattod.2020.01.045

  63. Ming N, Tao S, Yang W, Chen Q, Sun R, Wang C et al (2018) Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber. Opt Express 26:9017–9026. https://doi.org/10.1364/OE.26.009017

  64. Xu Y, Liu X, Zheng Y, Li C, Yeung KWK, Cui Z et al (2021) Ag3PO4 decorated black urchin-like defective TiO2 for rapid and long-term bacteria-killing under visible light. Bioact Mater 6:1575–1587. https://doi.org/10.1016/j.bioactmat.2020.11.013

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51802273), Sichuan Science and Technology Program (No. 19YYJC2882), Key Project of Southwest Petroleum University Open Experiments (No. 2020KSZ04030), Key Project of Southwest Petroleum University Open Experiments (2021KSZ04034), Ordinary Project of Southwest Petroleum University Open Experiments (No. 2021KSP04018), and Ordinary Project of Southwest Petroleum University Open Experiments (No. 2021KSP04019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 7.41 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Zeng, X. Photoelectrochemical biosensor based on DNA aptamers and dual nano-semiconductor heterojunctions for accurate and selective sensing of chloramphenicol. Microchim Acta 190, 18 (2023). https://doi.org/10.1007/s00604-022-05573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05573-2

Keywords

Navigation