Skip to main content
Log in

2D MOF-enhanced SPR detector based on tunable supramolecular probes for direct and sensitive detection of DOX in serum

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Therapeutic drug monitoring of doxorubicin (DOX) is important to study pharmacokinetics in patients undergoing chemotherapy for reduction of side effects and improve patient survival by rationally controlling the dose of DOX. A fast and ultra-sensitive surface plasmon resonance (SPR) detector without sample pre-handling was developed for DOX monitoring. First, the two-dimensional metal–organic framework was modified on the Au film to enhance SPR, and then, the supramolecular probes with tunable cavity structure were self-assembled at the sensing interface for direct detection of DOX through specific host–guest interactions with a low detection limit of 60.24 pM. The precise monitoring of DOX in serum proved the possibility of clinical application with recoveries in the range 102.86–109.47%. The mechanisms of host–guest interactions between supramolecular and small-molecule drugs were explored in depth through first-principles calculations combined with SPR experiments. The study paves the way for designing facile and sensitive detectors and provides theoretical support and a new methodology for the specific detection of small molecules through calixarene cavity modulation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gurney H (2002) How to calculate the dose of chemotherapy. Brit J Cancer 86:1297–1302

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ogata G, Ishii Y, Asai K, Sano Y, Nin F, Yoshida T, Higuchi T, Sawamura S, Ota T, Hori K, Maeda K, Komune S, Doi K, Takai M, Findlay I, Kusuhara H, Einaga Y, Hibino H (2017) A microsensing system for the in vivo real-time detection of local drug kinetics. Nat Biomed Eng 1:654–666

    CAS  PubMed  Google Scholar 

  3. Seyfinejad B, Jouyban A (2021) Overview of therapeutic drug monitoring of immunosuppressive drugs: analytical and clinical practices. J Pharmaceut Biomed 205:114315

  4. Gerweck LE, Kozin SV, Stocks SJ (1999) The pH partition theory predicts the accumulation and toxicity of doxorubicin in normal and low-pH-adapted cells. Brit J Cancer 79:838–842

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu J, Qi HL, Zhang H, Zhao ZY, Jing-Zhao NZY (2022) Morin inhibits dox-induced vascular inflammation by regulating PTEN/AKT/NF-kappa B pathway. Inflammation 45:2406–2418

    CAS  PubMed  Google Scholar 

  6. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genom 21:440–446

    CAS  Google Scholar 

  7. Eom YW, Kim MA, Park SS, Goo MJ, Kwon HJ, Sohn S, Kim WH, Yoon G, Choi KS (2005) Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene 24:4765–4777

    CAS  PubMed  Google Scholar 

  8. Broxterman HJ, Gotink KJ, Verheul HMW (2009) Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug Resist Update 12:114–126

    CAS  Google Scholar 

  9. Eskandari V, Sahbafar H, Zeinalizad L, Mahmoudi R, Karimpour F, Hadi A, Bardania H (2022) Coating of silver nanoparticles (AgNPs) on glass fibers by a chemical method as Plasmonic surface-enhanced Raman spectroscopy (SERS) sensors to detect molecular vibrations of doxorubicin (DOX) drug in blood plasma. Arab J Chem 15:104005

  10. Ibsen S, Su YX, Norton J, Zahavy E, Hayashi T, Adams S, Wrasidlo W, Esener S (2013) Extraction protocol and mass spectrometry method for quantification of doxorubicin released locally from prodrugs in tumor tissue. J Mass Spectrom 48:768–773

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Daeihamed M, Haeri A, Dadashzadeh S (2015) A simple and sensitive HPLC method for fluorescence quantitation of doxorubicin in micro-volume plasma: applications to pharmacokinetic studies in rats. Iran J Pharm Res 14:33–42

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Soleymani J, Hasanzadeh M, Eskandani M, Khoubnasabjafari M, Shadjou N, Jouyban A (2017) Electrochemical sensing of doxorubicin in unprocessed whole blood, cell lysate, and human plasma samples using thin film of poly-arginine modified glassy carbon electrode. Mat Sci Eng C-Mater 77:790–802

    CAS  Google Scholar 

  13. El-Kimary EI, El-Yazbi AF (2016) An eco-friendly stability-indicating spectrofluorimetric method for the determination of two anticancer stereoisomer drugs in their pharmaceutical preparations following micellar enhancement: application to kinetic degradation studies. Spectrochim Acta A 163:145–153

    ADS  CAS  Google Scholar 

  14. Sun F, Hung HC, Sinclair A, Zhang P, Bai T, Galvan DD, Jain P, Li BW, Jiang SY, Yu QM (2016) Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma. Nat Commun 7:13437

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang YD, Niu ZJ, Xu CC, Zhan MH, Koh K, Niu JF, Chen HX (2023) 2D MOF-enhanced SPR sensing platform: facile and ultrasensitive detection of sulfamethazine via supramolecular probe. J Hazard Mater 456:131642

  16. Ha NR, Jung IP, La IJ, Jung HS, Yoon MY (2017) Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor. Sci Rep-UK 7:40305

    ADS  CAS  Google Scholar 

  17. Saylan Y, Akgonullu S, Cimen D, Derazshamshir A, Bereli N, Yilmaz F, Denizli A (2017) Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensor Actuat B-Chem 241:446–454

    CAS  Google Scholar 

  18. Hartl A, Schmich E, Garrido JA, Hernando J, Catharino SCR, Walter S, Feulner P, Kromka A, Steinmuller D, Stutzmann M (2004) Protein-modified nanocrystalline diamond thin films for biosensor applications. Nat Mater 3:736–742

    ADS  PubMed  Google Scholar 

  19. Wang CG, Meloni MM, Wu XZ, Zhuo M, He TG, Wang JF, Wang CW, Dong PT (2019) Magnetic plasmonic particles for SERS-based bacteria sensing: a review. AIP Adv 9:010701

  20. Su SR, Chen YY, Li KY, Fang YC, Wang CH, Yang CY, Chau LK, Wang SC (2019) Electrohydrodynamically enhanced drying droplets for concentration of Salmonella bacteria prior to their detections using antibody-functionalized SERS-reporter submicron beads. Sensor Actuat B-Chem 283:384–389

    CAS  Google Scholar 

  21. Deckert F, Legay F (1999) Development and validation of an immunoreceptor assay for Simulect based on surface plasmon resonance. Anal Biochem 274:81–89

    CAS  PubMed  Google Scholar 

  22. Wang YD, Mao ZH, Chen Q, Koh K, Hu XJ, Chen HX (2022) Rapid and sensitive detection of PD-L1 exosomes using Cu-TCPP 2D MOF as a SPR sensitizer. Biosens Bioelectron 201:113954

  23. Zeng SW, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    CAS  PubMed  Google Scholar 

  24. Luo ZW, Zhang J, Wang YM, Chen JM, Li Y, Duan YX (2016) An aptamer based method for small molecules detection through monitoring salt-induced AuNPs aggregation and surface plasmon resonance (SPR) detection. Sensor Actuat B-Chem 236:474–479

    CAS  Google Scholar 

  25. Hu JJ, Zhao JL, Zhu H, Chen Q, Hu XJ, Koh K, Chen HX (2021) AuNPs network structures as a plasmonic matrix for ultrasensitive immunoassay based on surface plasmon resonance spectroscopy. Sensor Actuat B-Chem 340:129948

  26. Huang X, Hu JJ, Zhu H, Chen J, Liu YW, Mao ZH, Lee J, Chen HX (2021) Magnetic field-aligned Fe3O4-coated silver magnetoplasmonic nanochain with enhanced sensitivity for detection of Siglec-15. Biosens Bioelectron 191:113448

  27. Mao ZH, Peng XS, Zhou YY, Liu YW, Koh K, Chen HX (2022) Review of interface modification based on 2D nanomaterials for surface plasmon resonance biosensors. ACS Photonics 9:3807–3823

    CAS  Google Scholar 

  28. Ma JP, Chen GZ, Bai WS, Zheng JB (2020) Amplified electrochemical hydrogen peroxide sensing based on Cu-porphyrin metal-organic framework nanofilm and G-quadruplex-hemin DNAzyme. Acs Appl Mater Inter 12:58105–58112

    CAS  Google Scholar 

  29. Bahner N, Reich P, Frense D, Menger M, Schieke K, Beckmann D (2018) An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem 410:1453–1462

    CAS  PubMed  Google Scholar 

  30. Xu ZF, Deng PH, Li JH, Xu L, Tang SP (2017) Molecularly imprinted fluorescent probe based on FRET for selective and sensitive detection of doxorubicin. Mater Sci Eng B-Adv 218:31–39

    CAS  Google Scholar 

  31. Sheikh A, Abourehab MAS, Tulbah AS, Kesharwani P (2023) Aptamer-grafted, cell membrane-coated dendrimer loaded with doxorubicin as a targeted nanosystem against epithelial cellular adhesion molecule (EpCAM) for triple negative breast cancer therapy. J Drug Deliv Sci Tec 86:104745

  32. Youn H, Lee K, Her J, Jeon J, Mok J, So JI, Shin S, Ban C (2019) Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Sci Rep-UK 9:7659

    ADS  Google Scholar 

  33. Zhao Y, Huang YC, Zhu H, Zhu QQ, Xia YS (2016) Three-in-one: sensing, self-assembly, and cascade catalysis of cyclodextrin modified gold nanoparticles. J Am Chem Soc 138:16645–16654

    CAS  PubMed  Google Scholar 

  34. Zhao MT, Wang YX, Ma QL, Huang Y, Zhang X, Ping JF, Zhang ZC, Lu QP, Yu YF, Xu H, Zhao YL, Zhang H (2015) Ultrathin 2D metal-organic framework nanosheets. Adv Mater 27:7372-+

    CAS  PubMed  Google Scholar 

  35. Rahimi R, Moghaddas MM, Zargari S (2013) Investigation of the anchoring silane coupling reagent effect in porphyrin sensitized mesoporous V-TiO2 on the photodegradation efficiency of methyl orange under visible light irradiation. J Sol-Gel Sci Techn 65:420–429

    CAS  Google Scholar 

  36. Rahimi R, Shariatinia S, Zargari S, Berijani MY, Ghaffarinejad A, Shojaie ZS (2015) Synthesis, characterization, and photocurrent generation of a new nanocomposite based Cu-TCPP MOF and ZnO nanorod. Rsc Adv 5:46624–46631

    ADS  CAS  Google Scholar 

  37. Kieda N, Messing GL (1998) Microfoamy particles of copper oxide and nitride by spray pyrolysis of copper-ammine complex solutions. J Mater Sci Lett 17:299–301

    CAS  Google Scholar 

  38. Majano G, Perez-Ramirez J (2013) Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3(btc)2). Adv Mater 25:1052–1057

    CAS  PubMed  Google Scholar 

  39. Marsh DF, Mink LM (1996) Microscale synthesis and electronic absorption spectroscopy of tetraphenylporphyrin H-2(TPP) and metalloporphyrins Zn-II(TPP) and N-II(TPP). J Chem Educ 73:1188–1190

    CAS  Google Scholar 

  40. Geng HW, Hill CM, Zhu SL, Liu HY, Huang LB, Pan SL (2013) Photoelectrochemical properties and interfacial charge transfer kinetics of BODIPY-sensitized TiO2 electrodes. Rsc Adv 3:2306–2312

    ADS  CAS  Google Scholar 

  41. Campuzano S, Kuralay F, Lobo-Castanon MJ, Bartosik M, Vyavahare K, Palecek E, Haake DA, Wang J (2011) Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples. Biosens Bioelectron 26:3577–3583

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mao ZH, Zhao JL, Chen J, Hu XJ, Koh K, Chen HX (2021) A simple and direct SPR platform combining three-in-one multifunctional peptides for ultra-sensitive detection of PD-L1 exosomes. Sensor Actuat B-Chem 346:130496

  43. Loren A, Eliasson C, Josefson M, Murty KVGK, Kall M, Abrahamsson J, Abrahamsson K (2001) Feasibility of quantitative determination of doxorubicin with surface-enhanced Raman spectroscopy. J Raman Spectrosc 32:971–974

    ADS  CAS  Google Scholar 

  44. Rezaei B, Askarpour N, Ensafi AA (2014) A novel sensitive doxorubicin impedimetric immunosensor based on a specific monoclonal antibody-gold nanoaprticle-sol-gel modified electrode. Talanta 119:164–169

    CAS  PubMed  Google Scholar 

  45. Hamscher G, Mohring SAI, Knobloch A, Eberle N, Nau H, Nolte I, Simon D (2010) Determination of drug residues in urine of dogs receiving anti-cancer chemotherapy by liquid chromatography-electrospray ionization-tandem mass spectrometry: is there an environmental or occupational risk? J Anal Toxicol 34:142–148

    CAS  PubMed  Google Scholar 

  46. Hahn YH, Lee HY (2004) Electrochemical behavior and square wave voltammetric determination of doxorubicin hydrochloride. Arch Pharm Res 27:31–34

    CAS  PubMed  Google Scholar 

  47. Arnold RD, Slack JE, Straubinger RM (2004) Quantification of doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatogr B 808:141–152

    CAS  Google Scholar 

  48. Yan Q, Priebe W, Chaires JB, Czernuszewicz RS (1997) Interaction of doxorubicin and its derivatives with DNA: elucidation by resonance Raman and surface-enhanced resonance Raman spectroscopy. Biospectroscopy 3:307–316

    CAS  Google Scholar 

  49. Alvarez-Cedron L, Sayalero ML, Lanao JM (1999) High-performance liquid chromatographic validated assay of doxorubicin in rat plasma and tissues. J Chromatogr B 721:271–278

    CAS  Google Scholar 

  50. Peng AL, Xu HL, Luo CK, Ding H (2016) Application of a disposable doxorubicin sensor for direct determination of clinical drug concentration in patient blood. Int J Electrochem Sc 11:6266–6278

    CAS  Google Scholar 

  51. Hasanzadeh M, Hashemzadeh N, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M, Jouyban A (2016) Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. J Mol Liq 221:354–357

    CAS  Google Scholar 

  52. Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Voros J, Nakatsuka N (2021) Nonspecific binding-fundamental concepts and consequences for biosensing applications. Chem Rev 121:8095–8160

    CAS  PubMed  Google Scholar 

  53. Yamacli S, Avci M (2022) Computation of the binding energies between human ACE2 and spike RBDs of the original strain, delta and omicron variants of the SARS-CoV-2: a DFT simulation approach. Adv Theor Simul 5:2200337

    CAS  Google Scholar 

  54. Li WX, Tikhonov DS, Schnell M (2021) Double proton transfer across a table: the formic acid dimer-fluorobenzene complex. Angew Chem Int Edit 60:25674–25679

    CAS  Google Scholar 

  55. Ha H, Hahm H, Jwa DG, Yoo K, Park MH, Yoon M, Kim Y, Kim M (2017) Flexibility in metal-organic frameworks derived from positional and electronic effects of functional groups. CrystEngComm 19:5361–5368

    CAS  Google Scholar 

  56. Wang TT, Ravetch JV (2019) Functional diversification of IgGs through Fc glycosylation. J Clin Invest 129:3492–3498

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Open Project Program of the State Key Laboratory of Dairy Biotechnology (No. SKLDB2021-006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenmin Liu or Hongxia Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3457 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cao, J., Zhang, L. et al. 2D MOF-enhanced SPR detector based on tunable supramolecular probes for direct and sensitive detection of DOX in serum. Microchim Acta 191, 154 (2024). https://doi.org/10.1007/s00604-024-06226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06226-2

Keywords

Navigation