Skip to main content

Advertisement

Log in

Antifouling strategies for electrochemical sensing in complex biological media

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Surface fouling poses a significant challenge that restricts the analytical performance of electrochemical sensors in both in vitro and in vivo applications. Biofouling resistance is paramount to guarantee the reliable operation of electrochemical sensors in complex biofluids (e.g., blood, serum, and urine). Seeking efficient strategies for surface fouling and establishing highly sensitive sensing platforms for applications in complex media have received increasing attention in the past. In this review, we provide a comprehensive overview of recent research efforts focused on antifouling electrochemical sensors. Initially, we present a detailed illustration of the concept about biofouling along with an exploration of four key antifouling mechanisms. Subsequently, we delve into the commonly employed antifouling strategies in the fabrication of electrochemical sensors. These encompass physical surface topography (micro/nanostructure coatings and filtration membranes) and chemical surface modifications (PEG and its derivatives, zwitterionic polymers, peptides, proteins, and various other antifouling materials). The progress in antifouling electrochemical sensors is proposed concerning the antifouling mechanisms as well as sensing capability assessments (e.g., sensitivity, stability, and practical application ability). Finally, we summarize the evolving trends in the field and highlight some key remaining limitations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from reference [53]. Copyright 2022 Wiley. (B) SEM images depicting electrodes undergoing a progressive series of roughening pulse cycles. (C) Quantification of glucose concentration through direct glucose oxidation employing planar, MSE, and R-MSE. (D) Quantifying glucose concentration through direct glucose oxidation utilizing R-MSEs in 1 × PBS buffer, 1 × PBS buffer/BSA 40 mg·mL−1 and 1 × PBS buffer/BSA 40 mg·mL−1/50 μM AA. Reproduced with permission from reference [54]. Copyright 2023 Wiley

Fig. 3

Reproduced with permission from reference [62]. Copyright 2023 Elsevier. (C) Schematic showing the antifouling PTA − PANI nanoporous membrane-coated CFE and the structure of the PTA − PANI nanoporous membrane. Reproduced with permission from reference [63]. Copyright 2019 American Chemical Society. (D) Illustration of antifouling SNM-coated CFME for continuous monitoring of O2 in rat brain. Reproduced with permission from reference [64]. Copyright 2019 American Chemical Society. (E) Illustration of antifouling property of membrane-coated CF electrodes in vivo monitoring of pH. Reproduced with permission from reference [65]. Copyright 2019 American Chemical Society

Fig. 4

Reproduced with permission from reference [80]. Copyright 2022 American Chemical Society. (B) Synthesis scheme and chemical structures of the PEGMA-based multifunctional polymers. Reproduced with permission from reference [81]. Copyright 2023 Elsevier. (C) Schematic illustration of the construction of the bifunctional SAM of PEG-thiol-modified electrodes for electrochemical sensing for NS1 and IgG in diluted serum. Reproduced with permission from reference [83]. Copyright 2018 Elsevier. (D) Schematic illustration of the preparation of PMS-M2+/AuNPs/PEG/CS and the label-free electrochemical biosensor for simultaneous detection of CgA and CgB. Reproduced with permission from reference [84]. Copyright 2021 Elsevier. (E) Illustration of the fabrication of Fe3O4@Au@PEG@CS NPs and low-fouling biosensor for the detection of mycoplasma ovipneumonia. Reproduced with permission from reference [85]. Copyright 2020 Elsevier

Fig. 5

Reproduced with permission from reference [93]. Copyright 2023 Elsevier. (B) Illustration of the mechanisms of monolayer degradation and multiday stability approaches for electrochemical aptamer sensors. Reproduced with permission from reference [98]. Copyright 2023 American Chemical Society. (C) Illustration of the PSN-based biosensor for CA125 sensing in undiluted human serum. Reproduced with permission from reference [99]. Copyright 2023 Elsevier. (D) Illustration of the fabrication process of the PDA-PSBMA-based sensing platform. Reproduced with permission from reference [100]. Copyright 2020 Elsevier. (E) Electrochemical sensing platform for sensitive recognition of neurotransmitters based on zwitterion/dopamine Copolymer. (F) (a) DPV curves in BSA in the presence of interferents; (b) bar chart representation of current density variations in the presence of interferents; (c) stability of the response in BSA; (d) long-term stability test in BSA. Reproduced with permission from reference [102]. Copyright 2022 American Chemical Society

Fig. 6

Reproduced with permission from reference [110]. Copyright 2020 American Chemical Society. (B) Illustration of five-functional peptide-based CTCs biosensor. Reproduced with permission from reference [111]. Copyright 2022 American Chemical Society. (C) The functional design of a phosphorylated zwitterionic oligopeptide and the assembling procedure of phosphorylated oligopeptide-based biosensor. Reproduced with permission from reference [38]. Copyright 2023 American Chemical Society. (D) Illustrative representation of the construction and sensing of the PHHP-microsensor. Reproduced with permission from reference [29]. Copyright 2023 American Chemical Society. (E) Illustration of the structure of inverted Y-shaped peptides. Reproduced with permission from reference [116]. Copyright 2021 American Chemical Society. (F) Schematic structure of the designed multifunctional isopeptide. Reproduced with permission from reference [115]. Copyright 2023 American Chemical Society

Fig. 7

Reproduced with permission from reference [124]. Copyright 2021 American Chemical Society. (B) The construction processes of the UA sensor based on antifouling PTB. Reproduced with permission from reference [33]. Copyright 2023 Elsevier. (C) A diagrammatic representation of the HER2 biosensor construction, utilizing antifouling PEG and peptide. Reproduced with permission from reference [131]. Copyright 2023 Elsevier. (D) The antifouling HER2 biosensor fabrication process. Reproduced with permission from reference [132]. Copyright 2024 American Chemical Society. (E) Stepwise fabrication of the platelet membrane-based electrochemical immunosensor for detection of CD44. Reproduced with permission from reference [133]. Copyright 2022 American Chemical Society. (F) Illustration of the construction of the LM-Masked CFEs. Reproduced with permission from reference [26]. Copyright 2020 American Chemical Society

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Magin CM, Cooper SP, Brennan AB (2010) Non-toxic antifouling strategies. Mater Today 13:36–44

    CAS  Google Scholar 

  2. Blaszykowski C, Sheikh S, Thompson M (2012) Surface chemistry to minimize fouling from blood-based fluids. Chem Soc Rev 41:5599–5612

    CAS  PubMed  Google Scholar 

  3. Sabaté del Río J, Henry OYF, Jolly P, Ingber DE (2019) An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat Nanotechnol 14:1143–1149

    ADS  PubMed  Google Scholar 

  4. Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ (2020) Antifouling strategies for selective in vitro and in vivo sensing. Chem Rev 120:3852–3889

    CAS  PubMed  Google Scholar 

  5. Tong X, Liu S, Crittenden J, Chen Y (2021) Nanofluidic membranes to address the challenges of salinity gradient power harvesting. ACS Nano 15:5838–5860

    CAS  PubMed  Google Scholar 

  6. Wongkaew N, Simsek M, Griesche C, Baeumner AJ (2019) Functional nanomaterials and nanostructures enhancing electrochemical biosensors and Lab-on-a-Chip performances: recent progress, applications, and future perspective. Chem Rev 119:120–194

    CAS  PubMed  Google Scholar 

  7. Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y (2019) Advanced carbon for flexible and wearable electronics. Adv Mater 31:1801072

    Google Scholar 

  8. Taniselass S, Arshad MKM, Gopinath SCB (2019) Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens Bioelectron 130:276–292

    CAS  PubMed  Google Scholar 

  9. Lin P-H, Li B-R (2020) Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 145:1110–1120

    ADS  CAS  PubMed  Google Scholar 

  10. Zhang M, Yu P, Mao L (2012) Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry. Acc Chem Res 45:533–543

    CAS  PubMed  Google Scholar 

  11. Zhang L, Tian Y (2018) Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain. Acc Chem Res 51:688–696

    CAS  PubMed  Google Scholar 

  12. Wang Y, Qian Y, Zhang L, Zhang Z, Chen S, Liu J, He X, Tian Y (2023) Conductive metal–organic framework microelectrodes regulated by conjugated molecular wires for monitoring of dopamine in the mouse brain. J Am Chem Soc 145:2118–2126

    CAS  PubMed  Google Scholar 

  13. Liu B, Liu X, Shi S, Huang R, Su R, Qi W, He Z (2016) Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater 40:100–118

    CAS  PubMed  Google Scholar 

  14. Vaisocherová H, Brynda E, Homola J (2015) Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Anal Bioanal Chem 407:3927–3953

    PubMed  Google Scholar 

  15. Caracciolo G, Farokhzad OC, Mahmoudi M (2017) Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol 35:257–264

    CAS  PubMed  Google Scholar 

  16. Bertrand N, Grenier P, Mahmoudi M, Lima EM, Appel EA, Dormont F, Lim J-M, Karnik R, Langer R, Farokhzad OC (2017) Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 8:777

    ADS  PubMed  PubMed Central  Google Scholar 

  17. Zhou L, Li X, Zhu B, Su B (2022) An overview of antifouling strategies for electrochemical analysis. Electroanalysis 34:966–975

    CAS  Google Scholar 

  18. Wei T, Tang Z, Yu Q, Chen H (2017) Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl Mater Interfaces 9:37511–37523

    CAS  PubMed  Google Scholar 

  19. Zhang L, Cao Z, Bai T, Carr L, Ella-Menye J-R, Irvin C, Ratner BD, Jiang S (2013) Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 31:553–556

    CAS  PubMed  Google Scholar 

  20. Zhang D, Chen Q, Bi Y, Zhang H, Chen M, Wan J, Shi C, Zhang W, Zhang J, Qiao Z, Li J, Chen S, Liu R (2021) Bio-inspired poly-DL-serine materials resist the foreign-body response. Nat Commun 12:5327

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Colman RW (1993) Chapter 3 Mechanisms of thrombus formation and dissolution. Cardiovasc Pathol 2:23–31

    Google Scholar 

  22. Anderson JM (1993) Chapter 4 Mechanisms of inflammation and infection with implanted devices. Cardiovasc Pathol 2:33–41

    Google Scholar 

  23. Ingelsson M, Yasri N, Roberts EPL (2020) Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation-a review. Water Res 187:116433

    CAS  PubMed  Google Scholar 

  24. Schmuki P (2002) From bacon to barriers: a review on the passivity of metals and alloys. J Solid State Electrochem 6:145–164

    CAS  Google Scholar 

  25. Li Y, Zhao S, Xu Z, Qiao X, Li M, Li Y, Luo XL (2023) Peptide nucleic acid and antifouling peptide based biosensor for the non-fouling detection of COVID-19 nucleic acid in saliva. Biosens Bioelectron 225:115101

    CAS  PubMed  Google Scholar 

  26. Wei H, Wu F, Li L, Yang X, Xu C, Yu P, Ma F, Mao L (2020) Natural leukocyte membrane-masked microelectrodes with an enhanced antifouling ability and biocompatibility for in vivo electrochemical sensing. Anal Chem 92:11374–11379

    CAS  PubMed  Google Scholar 

  27. Hu X, Tian J, Li C, Su H, Qin R, Wang Y, Cao X, Yang P (2020) Amyloid-like protein aggregates: a new class of bioinspired materials merging an interfacial anchor with antifouling. Adv Mater 32:2000128

    CAS  Google Scholar 

  28. Zhao Z, Pan M, Qiao C, Xiang L, Liu X, Yang W, Chen XZ, Zeng H (2023) Bionic engineered protein coating boosting anti-biofouling in complex biological fluids. Adv Mater 35:2208824

    CAS  Google Scholar 

  29. Han R, Li Y, Shi MJ, Ding CF, Luo XL (2023) Designed polyhydroxyproline helical peptide with ultrarobust antifouling capability for electrochemical sensing in diverse complex biological fluids. Anal Chem 95:18540–18548

    CAS  PubMed  Google Scholar 

  30. Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–9636

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen S, Li L, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51:5283–5293

    CAS  Google Scholar 

  32. Zhao SJ, Qiao XJ, Chen M, Li Y, Wang X, Xu ZY, Wu YM, Luo XL (2022) d-Amino acid-based antifouling peptides for the construction of electrochemical biosensors capable of assaying proteins in serum with enhanced stability. ACS Sens 7:1740–1746

    CAS  PubMed  Google Scholar 

  33. Song Z, Li R, Yang XQ, Ambrosi A, Luo XL (2023) Ultralow fouling electrochemical detection of uric acid directly in serum based on phase-transited bovine serum albumin and conducting polymer. Chin Chem Lett 34:108314

    CAS  Google Scholar 

  34. Gu ST, Shi X-M, Zhang D, Fan G-C, Luo XL (2021) Peptide-based photocathodic biosensors: integrating a recognition peptide with an antifouling peptide. Anal Chem 93:2706–2712

    CAS  PubMed  Google Scholar 

  35. Hu Z, Xu Y, Wang H, Fan G-C, Luo XL (2022) Self-powered anti-interference photoelectrochemical immunosensor based on Au/ZIS/CIS heterojunction photocathode with zwitterionic peptide anchoring. Chin Chem Lett 33:4750–4755

    CAS  Google Scholar 

  36. Megelski S, Stephens JS, Chase B, Rabolt J (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35:8456–8466

    ADS  CAS  Google Scholar 

  37. Chen Q, Yu S, Zhang D, Zhang W, Zhang H, Zou J, Mao Z, Yuan Y, Gao C, Liu R (2019) Impact of antifouling PEG layer on the performance of functional peptides in regulating cell behaviors. J Am Chem Soc 141:16772–16780

    CAS  PubMed  Google Scholar 

  38. Qiao XJ, Qian Z-H, Sun W, Zhu C-Y, Li Y, Luo XL (2023) Phosphorylation of oligopeptides: design of ultra-hydrophilic zwitterionic peptides for anti-fouling detection of nucleic acids in saliva. Anal Chem 95:11091–11098

    CAS  PubMed  Google Scholar 

  39. Leng C, Hung H-C, Sieggreen O, Li Y, Jiang S, Chen Z (2015) Probing the surface hydration of nonfouling zwitterionic and poly(ethylene glycol) materials with isotopic dilution spectroscopy. J Phys Chem C 119:8775–8780

    CAS  Google Scholar 

  40. Leng C, Hung H-C, Sun S, Wang D, Li Y, Jiang S, Chen Z (2015) Probing the surface hydration of nonfouling zwitterionic and PEG materials in contact with proteins. ACS Appl Mater Interfaces 7:16881–16888

    CAS  PubMed  Google Scholar 

  41. Xie Y, Pan Y, Zhang R, Liang Y, Li Z (2015) Modulating protein behaviors on responsive surface by external electric fields: a molecular dynamics study. Appl Surf Sci 326:55–65

    ADS  CAS  Google Scholar 

  42. Jeon SI, Lee JH, Andrad J, De Gennes PG (1991) Protein-surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interface Sci 142:149–158

    ADS  CAS  Google Scholar 

  43. Zheng J, Li L, Tsao H-K, Sheng Y-J, Chen S, Jiang S (2005) Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: a molecular simulation study. Biophys J 89:158–166

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu S-T, Huang C-Y, Weng C-C, Chang C-C, Li B-R, Hsu C-S (2019) Rapid prototyping of an open-surface microfluidic platform using wettability-patterned surfaces prepared by an atmospheric-pressure plasma jet. ACS Omega 4:16292–16299

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gao A, Yan Y, Li T, Liu F (2019) Biomimetic urchin-like surface based on poly (lactic acid) membrane for robust anti-wetting and anti-bacteria properties. Mater Lett 237:240–244

    CAS  Google Scholar 

  46. Murakami D, Jinnai H, Takahara A (2014) Wetting transition from the cassie-baxter state to the wenzel state on textured polymer surfaces. Langmuir 30:2061–2067

    CAS  PubMed  Google Scholar 

  47. Cao X, Pettitt ME, Wode F, Arpa Sancet MP, Fu J, Ji J, Callow ME, Callow JA, Rosenhahn A, Grunze M (2010) Interaction of zoospores of the green alga ulva with bioinspired micro- and nanostructured surfaces prepared by polyelectrolyte layer-by-layer self-assembly. Adv Funct Mater 20:1984–1993

    CAS  Google Scholar 

  48. Bers AV, Wahl M (2004) The influence of natural surface microtopographies on fouling. Biofouling 20:43–51

    CAS  PubMed  Google Scholar 

  49. Patel J, Radhakrishnan L, Zhao B, Uppalapati B, Daniels RC, Ward KR, Collinson MM (2013) Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions. Anal Chem 85:11610–11618

    CAS  PubMed  Google Scholar 

  50. Daggumati P, Matharu Z, Seker E (2015) Effect of nanoporous gold thin film morphology on electrochemical DNA sensing. Anal Chem 87:8149–8156

    CAS  PubMed  Google Scholar 

  51. Chapman CAR, Chen H, Stamou M, Biener J, Biener MM, Lein PJ, Seker E (2015) Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size. ACS Appl Mater Interfaces 7:7093–7100

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Silva TA, Khan MRK, Fatibello-Filho O, Collinson MM (2019) Simultaneous electrochemical sensing of ascorbic acid and uric acid under biofouling conditions using nanoporous gold electrodes. J Electroanal Chem 846:113160

    CAS  Google Scholar 

  53. Sabaté del Río J, Woo H-K, Park J, Ha HK, Kim J-R, Cho Y-K (2022) SEEDING to enable sensitive electrochemical detection of biomarkers in undiluted biological samples. Adv Mater 34:2200981

    Google Scholar 

  54. González-Martínez E, Saem S, Beganovic NE, Moran-Mirabal JM (2023) Electrochemical nano-roughening of gold microstructured electrodes for enhanced sensing in biofluids. Angew Chem Int Ed 62:e202218080

    Google Scholar 

  55. Martins TS, Bott-Neto JL, Machado SAS, Oliveira ON Jr (2022) Label-free electrochemical immunosensor made with tree-like gold dendrites for monitoring 25-hydroxyvitamin D3 metabolite. ACS Appl Mater Interfaces 14:31455–31462

    CAS  PubMed  Google Scholar 

  56. Yang J, He D, Zhang N, Hu C (2022) Disposable carbon nanotube-based antifouling electrochemical sensors for detection of morphine in unprocessed coffee and milk. J Electroanal Chem 905:115997

    CAS  Google Scholar 

  57. Ramya R, Thivya P, Nathiya D, Wilson J (2021) Polypyrrole and enzyme free cholesterol flakes based composite: selective determination of theophylline. J Pharm Biomed Anal 199:114065

    Google Scholar 

  58. Wu S, Lan X, Huang F, Luo Z, Ju H, Meng C, Duan C (2012) Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon. Biosens Bioelectron 32:293–296

    CAS  PubMed  Google Scholar 

  59. Sun Q, Yan F, Yao L, Su B (2016) Anti-biofouling isoporous silica-micelle membrane enabling drug detection in human whole blood. Anal Chem 88:8364–8368

    CAS  PubMed  Google Scholar 

  60. Yan F, Zheng W, Yao L, Su B (2015) Direct electrochemical analysis in complex samples using ITO electrodes modified with permselective membranes consisting of vertically ordered silica mesochannels and micelles. Chem Commun 51:17736–17739

    CAS  Google Scholar 

  61. Zhou L, Ding H, Yan F, Guo W, Su B (2018) Electrochemical detection of Alzheimer’s disease related substances in biofluids by silica nanochannel membrane modified glassy carbon electrodes. Analyst 143:4756–4763

    ADS  CAS  PubMed  Google Scholar 

  62. Liu Y, Wang X, Zeng X, Waterhouse GIN, Jiang X, Zhang Z, Yu L (2023) Antifouling improvement in Pb2+ ion selective electrodes by using an environmentally friendly capsaicin derivative. Talanta 258:124436

    CAS  PubMed  Google Scholar 

  63. Feng T, Ji W, Tang Q, Wei H, Zhang S, Mao J, Zhang Y, Mao L, Zhang M (2019) Low-fouling nanoporous conductive polymer-coated microelectrode for in vivo monitoring of dopamine in the rat brain. Anal Chem 91:10786–10791

    CAS  PubMed  Google Scholar 

  64. Zhou L, Hou H, Wei H, Yao L, Sun L, Yu P, Su B, Mao L (2019) In vivo monitoring of oxygen in rat brain by carbon fiber microelectrode modified with antifouling nanoporous membrane. Anal Chem 91:3645–3651

    CAS  PubMed  Google Scholar 

  65. Hao J, Xiao T, Wu F, Yu P, Mao L (2016) High antifouling property of ion-selective membrane: toward in vivo monitoring of pH change in live brain of rats with membrane-coated carbon fiber electrodes. Anal Chem 88:11238–11243

    CAS  PubMed  Google Scholar 

  66. Hang T, Xiao S, Yang C, Li X, Guo C, He G, Li B, Yang C, Chen H-j, Liu F, Deng S, Zhang Y, Xie X (2019) Hierarchical graphene/nanorods-based H2O2 electrochemical sensor with self-cleaning and anti-biofouling properties. Sens Actuators B 289:15–23

    CAS  Google Scholar 

  67. Ruiz-Valdepeñas Montiel V, Sempionatto JR, Esteban-Fernández de Ávila B, Whitworth A, Campuzano S, Pingarrón JM, Wang J (2018) Delayed sensor activation based on transient coatings: biofouling protection in complex biofluids. J Am Chem Soc 140:14050–14053

    PubMed  Google Scholar 

  68. Daggumati P, Matharu Z, Wang L, Seker E (2015) Biofouling-resilient nanoporous gold electrodes for DNA sensing. Anal Chem 87:8618–8622

    CAS  PubMed  Google Scholar 

  69. Zhou J, Zhang L, Tian Y (2016) Micro electrochemical pH sensor applicable for real-time ratiometric monitoring of pH values in rat brains. Anal Chem 88:2113–2118

    CAS  PubMed  Google Scholar 

  70. Bocquet L, Lauga E (2011) A smooth future? Nat Mater 10:334–337

    ADS  CAS  PubMed  Google Scholar 

  71. Zhang D, Li L, Wu Y, Zhu B, Song H (2019) One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability. Appl Surf Sci 473:493–499

    ADS  CAS  Google Scholar 

  72. Maan AMC, Hofman AH, de Vos WM, Kamperman M (2020) Recent developments and practical feasibility of polymer-based antifouling coatings. Adv Funct Mater 30:2000936

    CAS  Google Scholar 

  73. Greene GW, Martin LL, Tabor RF, Michalczyk A, Ackland LM, Horn R (2015) Lubricin: a versatile, biological anti-adhesive with properties comparable to polyethylene glycol. Biomaterials 53:127–136

    CAS  PubMed  Google Scholar 

  74. Li B, Jain P, Ma J, Smith JK, Yuan Z, Hung H-C, He Y, Lin X, Wu K, Pfaendtner J, Jiang S (2019) Trimethylamine N-oxide–derived zwitterionic polymers: a new class of ultralow fouling bioinspired materials. Sci Adv 5:eaaw9562

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620

    CAS  Google Scholar 

  76. Lee JH, Kopecek J, Andrade JD (1989) Protein-resistant surfaces prepared by PEO-containing block copolymer surfactants. J Biomed Mater Res 23:351–368

    PubMed  Google Scholar 

  77. Norman ME, Williams P, Illum L (1992) Human serum albumin as a probe for surface conditioning (opsonization) of block copolymer-coated microspheres. Biomaterials 13:841–849

    CAS  PubMed  Google Scholar 

  78. Freij-Larsson C, Nylander T, Jannasch P, Wesslén B (1996) Adsorption behaviour of amphiphilic polymers at hydrophobic surfaces: effects on protein adsorption. Biomaterials 17:2199–2207

    CAS  PubMed  Google Scholar 

  79. Hui N, Sun X, Niu S, Luo X (2017) PEGylated polyaniline nanofibers: antifouling and conducting biomaterial for electrochemical DNA sensing. ACS Appl Mater Interfaces 9:2914–2923

    CAS  PubMed  Google Scholar 

  80. Ma B, Yao T, Meng X, Xu Y, Ma Z, Ha H (2022) Novel immunoprobe based on MOF-818 synergizing with an antifouling sensing interface to improve immunosensors. ACS Sustain Chem Eng 10:12041–12047

    CAS  Google Scholar 

  81. Kim J, Baek KJ, Yu S, Yang HS, Khaliq NU, Choi WI, Kim H, Sung D (2023) Ferrocene-based acrylate copolymer multilayers with efficient antifouling and electrochemical redox properties. Electrochim Acta 463:142824

    CAS  Google Scholar 

  82. Hu Z, Zhu R, Figueroa-Miranda G, Zhou L, Feng L, Offenhäusser A, Mayer D (2023) Truncated electrochemical aptasensor with enhanced antifouling capability for highly sensitive serotonin detection. Biosensors 13:881

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Santos A, Bueno PR, Davis JJ (2018) A dual marker label free electrochemical assay for Flavivirus dengue diagnosis. Biosens Bioelectron 100:519–525

    CAS  PubMed  Google Scholar 

  84. Liu X, Li Y, He L, Feng Y, Tan H, Chen X, Yang W (2021) Simultaneous detection of multiple neuroendocrine tumor markers in patient serum with an ultrasensitive and antifouling electrochemical immunosensor. Biosens Bioelectron 194:113603

    CAS  PubMed  Google Scholar 

  85. Zhao S, Zhou Y, Wei L, Chen L (2020) Low fouling strategy of electrochemical biosensor based on chondroitin sulfate functionalized gold magnetic particle for voltammetric determination of mycoplasma ovipneumonia in whole serum. Anal Chim Acta 1126:91–99

    CAS  PubMed  Google Scholar 

  86. Wang W, Fan X, Xu S, Davis JJ, Luo X (2015) Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosens Bioelectron 71:51–56

    CAS  PubMed  Google Scholar 

  87. Cui M, Song Z, Wu Y, Guo B, Fan X, Luo X (2016) A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT. Biosens Bioelectron 79:736–741

    CAS  PubMed  Google Scholar 

  88. Wang G, Xu Q, Liu L, Su X, Lin J, Xu G, Luo X (2017) Mixed self-assembly of polyethylene glycol and aptamer on polydopamine surface for highly sensitive and low-fouling detection of adenosine triphosphate in complex media. ACS Appl Mater Interfaces 9:31153–31160

    CAS  PubMed  Google Scholar 

  89. Pidhatika B, Rodenstein M, Chen Y, Rakhmatullina E, Mühlebach A, Acikgöz C, Textor M, Konradi R (2012) Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings. Biointerphases 7:1

    CAS  PubMed  Google Scholar 

  90. Krause JE, Brault ND, Li Y, Xue H, Zhou Y, Jiang S (2011) Photoiniferter-mediated polymerization of zwitterionic carboxybetaine monomers for low-fouling and functionalizable surface coatings. Macromolecules 44:9213–9220

    ADS  CAS  Google Scholar 

  91. Zhu Y, Xu X, Brault ND, Keefe AJ, Han X, Deng Y, Xu J, Yu Q, Jiang S (2014) Cellulose paper sensors modified with zwitterionic poly(carboxybetaine) for sensing and detection in complex media. Anal Chem 86:2871–2875

    CAS  PubMed  Google Scholar 

  92. Bai T, Sun F, Zhang L, Sinclair A, Liu S, Ella-Menye J-R, Zheng Y, Jiang S (2014) Restraint of the differentiation of mesenchymal stem cells by a nonfouling zwitterionic hydrogel. Angew Chem Int Ed 53:12729–12734

    CAS  Google Scholar 

  93. Anthi J, Vaněčková E, Spasovová M, Houska M, Vrabcová M, Vogelová E, Holubová B, Vaisocherová-Lísalová H, Kolivoška V (2023) Probing charge transfer through antifouling polymer brushes by electrochemical methods: the impact of supporting self-assembled monolayer chain length. Anal Chim Acta 1276:341640

    CAS  PubMed  Google Scholar 

  94. Le NL, Ulbricht M, Nunes SP (2017) How do polyethylene glycol and poly(sulfobetaine) hydrogel layers on ultrafiltration membranes minimize fouling and stay stable in cleaning chemicals? Ind Eng Chem Res 56:6785–6795

    CAS  Google Scholar 

  95. Chang Y, Shih Y-J, Lai C-J, Kung H-H, Jiang S (2013) Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood. Adv Funct Mater 23:1100–1110

    CAS  Google Scholar 

  96. Rodriguez Emmenegger C, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB (2009) Interaction of blood plasma with antifouling surfaces. Langmuir 25:6328–6333

    CAS  PubMed  Google Scholar 

  97. Konai MM, Bhattacharjee B, Ghosh S, Haldar J (2018) Recent progress in polymer research to tackle infections and antimicrobial resistance. Biomacromol 19:1888–1917

    CAS  Google Scholar 

  98. Watkins Z, Karajic A, Young T, White R, Heikenfeld J (2023) Week-long operation of electrochemical aptamer sensors: new insights into self-assembled monolayer degradation mechanisms and solutions for stability in serum at body temperature. ACS Sens 8:1119–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang H, Wang P, Geng F, Wu Q, Song F, Ding C (2023) Copolymerization of zwitterionic sulfobetaine and hydrophobic acrylamide based antifouling electrochemical biosensors for detection of CA125 in clinical serum samples. Sens Actuators B 387:133820

    CAS  Google Scholar 

  100. Xu Z, Han R, Liu N, Gao F, Luo X (2020) Electrochemical biosensors for the detection of carcinoembryonic antigen with low fouling and high sensitivity based on copolymerized polydopamine and zwitterionic polymer. Sens Actuators B 319:128253

    CAS  Google Scholar 

  101. Wei H, Ni S, Cao C, Yang G, Liu G (2018) Graphene oxide signal reporter based multifunctional immunosensing platform for amperometric profiling of multiple cytokines in serum. ACS Sens 3:1553–1561

    CAS  PubMed  Google Scholar 

  102. Olejnik A, Ficek M, Szkodo M, Stanisławska A, Karczewski J, Ryl J, Dołęga A, Siuzdak K, Bogdanowicz R (2022) Tailoring diffusional fields in zwitterion/dopamine copolymer electropolymerized at carbon nanowalls for sensitive recognition of neurotransmitters. ACS Nano 16:13183–13198

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Jiang C, Alam MT, Silva SM, Taufik S, Fan S, Gooding JJ (2016) Unique sensing interface that allows the development of an electrochemical immunosensor for the detection of tumor necrosis factor α in whole blood. ACS Sens 1:1432–1438

    CAS  Google Scholar 

  104. Wu B, Castagnola E, Cui XT (2023) Zwitterionic polymer coated and aptamer functionalized flexible micro-electrode arrays for in vivo cocaine sensing and electrophysiology. Micromachines 14:323

    PubMed  PubMed Central  Google Scholar 

  105. Goda T, Toya M, Matsumoto A, Miyahara Y (2015) Poly(3,4-ethylenedioxythiophene) bearing phosphorylcholine groups for metal-free, antibody-free, and low-impedance biosensors specific for C-reactive protein. ACS Appl Mater Interfaces 7:27440–27448

    CAS  PubMed  Google Scholar 

  106. Cui M, Wang Y, Jiao M, Jayachandran S, Wu Y, Fan X, Luo X (2017) Mixed self-assembled aptamer and newly designed zwitterionic peptide as antifouling biosensing interface for electrochemical detection of alpha-etoprotein. ACS Sens 2:490–494

    CAS  PubMed  Google Scholar 

  107. Keefe AJ, Caldwell KB, Nowinski AK, White AD, Thakkar A, Jiang S (2013) Screening nonspecific interactions of peptides without background interference. Biomaterials 34:1871–1877

    CAS  PubMed  Google Scholar 

  108. Ye H, Wang L, Huang R, Su R, Liu B, Qi W, He Z (2015) Superior antifouling performance of a zwitterionic peptide compared to an amphiphilic, non-ionic peptide. ACS Appl Mater Interfaces 7:22448–22457

    CAS  PubMed  Google Scholar 

  109. Liu N, Hui N, Davis JJ, Luo X (2018) Low fouling protein detection in complex biological media supported by a designed multifunctional peptide. ACS Sens 3:1210–1216

    CAS  PubMed  Google Scholar 

  110. Song Z, Chen M, Ding C, Luo X (2020) Designed three-in-one peptides with anchoring, antifouling, and recognizing capabilities for highly sensitive and low-fouling electrochemical sensing in complex biological media. Anal Chem 92:5795–5802

    CAS  PubMed  Google Scholar 

  111. Han R, Li Y, Chen M, Li W, Ding C, Luo X (2022) Antifouling electrochemical biosensor based on the designed functional peptide and the electrodeposited conducting polymer for CTC analysis in human blood. Anal Chem 94:2204–2211

    CAS  PubMed  Google Scholar 

  112. Wang G, Han R, Li Q, Han Y, Luo X (2020) Electrochemical biosensors capable of detecting biomarkers in human serum with unique long-term antifouling abilities based on designed multifunctional peptides. Anal Chem 92:7186–7193

    CAS  PubMed  Google Scholar 

  113. Liu N, Song J, Lu Y, Davis JJ, Gao F, Luo X (2019) Electrochemical aptasensor for ultralow fouling cancer cell quantification in complex biological media based on designed branched peptides. Anal Chem 91:8334–8340

    CAS  PubMed  Google Scholar 

  114. Chen M, Han R, Wang W, Li Y, Luo X (2021) Antifouling aptasensor based on self-assembled loop-closed peptides with enhanced stability for CA125 assay in complex biofluids. Anal Chem 93:13555–13563

    CAS  PubMed  Google Scholar 

  115. Han R, Li Y, Hou W, Ding C, Luo X (2023) Designed multifunctional isopeptide for enhanced annexin A1 biosensing based on peptide-protein interactions in human blood. Anal Chem 95:9025–9033

    CAS  PubMed  Google Scholar 

  116. Song Z, Ma Y, Chen M, Ambrosi A, Ding C, Luo X (2021) Electrochemical biosensor with enhanced antifouling capability for COVID-19 nucleic acid detection in complex biological media. Anal Chem 93:5963–5971

    CAS  PubMed  Google Scholar 

  117. Wang W, Han R, Chen M, Luo X (2021) Antifouling peptide hydrogel based electrochemical biosensors for highly sensitive detection of cancer biomarker HER2 in human serum. Anal Chem 93:7355–7361

    CAS  PubMed  Google Scholar 

  118. Qiao X, Cai Y, Kong Z, Xu Z, Luo X (2023) A wearable electrochemical sensor based on anti-fouling and self-healing polypeptide complex hydrogels for sweat monitoring. ACS Sens 8:2834–2842

    CAS  PubMed  Google Scholar 

  119. Ma GJ, Ferhan AR, Jackman JA, Cho N-J (2020) Conformational flexibility of fatty acid-free bovine serum albumin proteins enables superior antifouling coatings. Commun Mater 1:45

    Google Scholar 

  120. Fang B, Ling Q, Zhao W, Ma Y, Bai P, Wei Q, Li H, Zhao C (2009) Modification of polyethersulfone membrane by grafting bovine serum albumin on the surface of polyethersulfone/poly(acrylonitrile-co-acrylic acid) blended membrane. J Membr Sci 329:46–55

    CAS  Google Scholar 

  121. Chaturvedi SK, Ma J, Zhao H, Schuck P (2017) Use of fluorescence-detected sedimentation velocity to study high-affinity protein interactions. Nat Protoc 12:1777–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Tian C, Wang L, Luan F, Fu X, Zhuang X, Chen L (2019) A novel electrochemiluminescent emitter of europium hydroxide nanorods and its application in bioanalysis. Chem Commun 55:12479–12482

    CAS  Google Scholar 

  123. Zupančič U, Jolly P, Estrela P, Moschou D, Ingber DE (2021) Graphene enabled low-noise surface chemistry for multiplexed sepsis biomarker detection in whole blood. Adv Funct Mater 31:2010638

    Google Scholar 

  124. Li Y, Han R, Chen M, Zhang L, Wang G, Luo X (2021) Bovine serum albumin-cross-linked polyaniline nanowires for ultralow fouling and highly sensitive electrochemical protein quantification in human serum samples. Anal Chem 93:4326–4333

    CAS  PubMed  Google Scholar 

  125. Li Y, Han R, Chen M, Yang X, Zhan Y, Wang L, Luo X (2021) Electrochemical biosensor with enhanced antifouling capability based on amyloid-like bovine serum albumin and a conducting polymer for ultrasensitive detection of proteins in human serum. Anal Chem 93:14351–14357

    CAS  PubMed  Google Scholar 

  126. Liu X, Huang R, Su R, Qi W, Wang L, He Z (2014) Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors. ACS Appl Mater Interfaces 6:13034–13042

    CAS  PubMed  Google Scholar 

  127. Wang W, Jayachandran S, Li M, Xu S, Luo X (2018) Hyaluronic acid functionalized nanostructured sensing interface for voltammetric determination of microRNA in biological media with ultra-high sensitivity and ultra-low fouling. Microchim Acta 185:156

    Google Scholar 

  128. Wang J, Hui N (2018) A nonfouling voltammetric immunosensor for the carcinoembryonic antigen based on the use of polyaniline nanowires wrapped with hyaluronic acid. Microchim Acta 185:329

    Google Scholar 

  129. Lv S, Sheng J, Zhao S, Liu M, Chen L (2018) The detection of brucellosis antibody in whole serum based on the low-fouling electrochemical immunosensor fabricated with magnetic Fe3O4@Au@PEG@HA nanoparticles. Biosens Bioelectron 117:138–144

    CAS  PubMed  Google Scholar 

  130. Song Z, Li R, Yang XQ, Zhang ZH, Luo XL (2022) Functional DNA-peptide conjugates with enhanced antifouling capabilities for electrochemical detection of proteins in complex human serum. Sens Actuators B 367:132110

    CAS  Google Scholar 

  131. Yang XQ, Chen P, Zhang X, Zhou H, Song Z, Yang WL, Luo XL (2023) An electrochemical biosensor for HER2 detection in complex biological media based on two antifouling materials of designed recognizing peptide and PEG. Anal Chim Acta 1252:341075

    CAS  PubMed  Google Scholar 

  132. Li Y, Han R, Feng J, Li J, Luo XL (2024) Phospholipid bilayer integrated with multifunctional peptide for ultralow-fouling electrochemical detection of her2 in human serum. Anal Chem 96:531–537

    PubMed  Google Scholar 

  133. Lian M, Shi Y, Chen L, Qin Y, Zhang W, Zhao J, Chen D (2022) Cell membrane and V2C MXene-based electrochemical immunosensor with enhanced antifouling capability for detection of CD44. ACS Sens 7:2701–2709

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (22174082, 22374085), the Natural Science Foundation of Shandong Province, China (ZR2022QB049), and the Postdoctoral Science Foundation of Shandong Province, China (SDCX-ZG-202203020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Luo.

Ethics declarations

Ethical approval

This work did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Han, R., Yu, K. et al. Antifouling strategies for electrochemical sensing in complex biological media. Microchim Acta 191, 138 (2024). https://doi.org/10.1007/s00604-024-06218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06218-2

Keywords

Navigation