Skip to main content
Log in

Advancements in the research of finger-actuated POCT chips

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Microfluidic point-of-care testing (POCT) chips are used to enable the mixing and reaction of small sample volumes, facilitating target molecule detection. Traditional methods for actuating POCT chips rely on external pumps or power supplies, which are complex and non-portable. The development of finger-actuated chips has reduced operational difficulty and improved portability, promoting the development of POCT chips. This paper reviews the significance, developments, and potential applications of finger-actuated POCT chips. Three methods for controlling the flow accuracy of finger-actuated chips are summarized: direct push, indirect control, and sample injection control method, along with their respective advantages and disadvantages. Meanwhile, a comprehensive analysis of multi-fluid driving modes is provided, categorizing them into single-push multi-driving and multi-push multi-driving modes. Furthermore, recent research breakthroughs in finger-actuated chips are thoroughly summarized, and their structures, driving, and detection methods are discussed. Finally, this paper discusses the driving performance of finger-actuated chips, the suitability of detection scenarios, and the compatibility with existing detection technologies. It also provides prospects for the future development and application of finger-actuated POCT chips.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Copyright 2023, Anal Chim Acta)

Fig. 2

(Copyright 2022, Micromachines (Basel)). b A finger-actuated microfluidic chip of indirect control and the working diagram of indirect control the deformation of PDMS membrane [21] (Copyright 2018, Lab Chip). c The diagram of using a layer-by-layer nanoassembly spraying method to generate asymmetric capillary force [22] (Copyright 2020, Sensors and Actuators A: Physical). d A finger-actuated microfluidic chip of indirect control by piezoelectric elements and finger operation process on the chip [23] (Copyright 2014, Lab Chip). e A finger-actuated microfluidic chip of sample injection control method [25] (Copyright 2022, Lab Chip)

Fig. 3

(Copyright 2020, Lab Chip) and [29] (Copyright 2022, Sensors and Actuators B: Chemical). c, d Multi-push multi-driving mode of finger-actuated microfluidic chip [17] (Copyright 2020, Sensors (Basel)) and [31] (Copyright 2021, Sensors and Actuators B: Chemical)

Fig. 4

(Copyright 2019, Anal Chem). b A finger-actuated microfluidic chip for the multiplex detection of foodborne pathogens [12] (Copyright 2023, Biosens Bioelectron). c A finger-actuated microfluidic concentration gradient generator [41] (Copyright 2019, Micromachines (Basel)). d A dual-detection microfluidic chip for rapid quantitative analysis of two amino acids [42] (Copyright 2023, Biosens Bioelectron). e The diagram and object figures of a microfluidic chip for nucleic acid detection and purification [43] (Copyright 2019, Lab Chip)

Similar content being viewed by others

References

  1. Zhou Q, Pan J, Mo L et al (2022) Fluorescent on-site detection of multiple pathogens using smartphone-based portable device with paper-based isothermal amplification chip. Mikrochim Acta 189(9):333. https://doi.org/10.1007/s00604-022-05419-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Henares TG, Mizutani F, Hisamoto H (2008) Current development in microfluidic immunosensing chip. Anal Chim Acta 611(1):17–30. https://doi.org/10.1016/j.aca.2008.01.064

    Article  CAS  PubMed  Google Scholar 

  3. Wang C, Liu M, Wang Z et al (2021) Point-of-care diagnostics for infectious diseases: from methods to devices. Nano Today 37:101092. https://doi.org/10.1016/j.nantod.2021.101092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carrara S (2010) Nano-bio-technology and sensing chips: new systems for detection in personalized therapies and cell biology. Sensors (Basel) 10(1):526–543. https://doi.org/10.3390/s100100526

    Article  PubMed  Google Scholar 

  5. Kim HS, Weiss TL, Thapa HR et al (2014) A microfluidic photobioreactor array demonstrating high-throughput screening for microalgal oil production. Lab Chip 14(8):1415–1425. https://doi.org/10.1039/c3lc51396c

    Article  CAS  PubMed  Google Scholar 

  6. Xie Z, Pu H, Sun DW (2021) Computer simulation of submicron fluid flows in microfluidic chips and their applications in food analysis. Compr Rev Food Sci Food Saf 20(4):3818–3837. https://doi.org/10.1111/1541-4337.12766

    Article  PubMed  Google Scholar 

  7. Fang Z, Ding Y, Zhang Z et al (2020) Digital microfluidic meter-on-chip. Lab Chip 20(4):722–733. https://doi.org/10.1039/c9lc00989b

    Article  CAS  PubMed  Google Scholar 

  8. Oda Y, Oshima H, Nakatani M et al (2019) Vacuum-driven fluid manipulation by a piezoelectric diaphragm micropump for microfluidic droplet generation with a rapid system response time. Electrophoresis 40(3):414–418. https://doi.org/10.1002/elps.201800357

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Jiang H, Pan L et al (2023) Rapid on-site nucleic acid testing: on-chip sample preparation, amplification, and detection, and their integration into all-in-one systems. Front Bioeng Biotechnol 11:1020430. https://doi.org/10.3389/fbioe.2023.1020430

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu Y, Gao R, Zhuo Y et al (2023) Rapid simultaneous SERS detection of dual myocardial biomarkers on single-track finger-pump microfluidic chip. Anal Chim Acta 1239:340673. https://doi.org/10.1016/j.aca.2022.340673

    Article  CAS  PubMed  Google Scholar 

  11. Iwai K, Shih KC, Lin X et al (2014) Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip 14(19):3790–3799. https://doi.org/10.1039/c4lc00500g

    Article  CAS  PubMed  Google Scholar 

  12. Xing G, Shang Y, Wang X et al (2023) Multiplexed detection of foodborne pathogens using one-pot CRISPR/Cas12a combined with recombinase aided amplification on a finger-actuated microfluidic biosensor. Biosens Bioelectron 220:114885. https://doi.org/10.1016/j.bios.2022.114885

    Article  CAS  PubMed  Google Scholar 

  13. Hongzhou C, Shuping G, Wenju W et al (2017) Lab-on-a-chip technologies for genodermatoses: recent progress and future perspectives. J Dermatol Sci 85(2):71–76. https://doi.org/10.1016/j.jdermsci.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  14. Liu C, Xue N, Cai H et al (2020) Nanoparticles enhanced self-driven microfludic biosensor. Micromachines (Basel) 11(4):350. https://doi.org/10.3390/mi11040350

  15. Wang Z, Wang Y, Lin L et al (2022) A finger-driven disposable micro-platform based on isothermal amplification for the application of multiplexed and point-of-care diagnosis of tuberculosis. Biosens Bioelectron 195:113663. https://doi.org/10.1016/j.bios.2021.113663

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Li M, Zheng J et al (2022) Electrochemical detection of ascorbic acid in finger-actuated microfluidic chip. Micromachines (Basel) 13(9):1479. https://doi.org/10.3390/mi13091479

  17. Jo Y, Park J, Park JK (2020) Colorimetric detection of escherichia coli O157:H7 with signal enhancement using size-based filtration on a finger-powered microfluidic device. Sensors (Basel) 20(8):2267. https://doi.org/10.3390/s20082267

  18. Doh I, Cho YH (2009) Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel membrane valves. Lab Chip 9(14):2070–2075. https://doi.org/10.1039/b821524c

    Article  CAS  PubMed  Google Scholar 

  19. Qi Y, Jafferis NT, Lyons K Jr et al (2010) Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett 10(2):524–528. https://doi.org/10.1021/nl903377u

    Article  CAS  PubMed  Google Scholar 

  20. Jang I, Kang H, Song S et al (2021) Flow control in a laminate capillary-driven microfluidic device. Analyst 146(6):1932–1939. https://doi.org/10.1039/d0an02279a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park J, Park JK (2018) Finger-actuated microfluidic device for the blood cross-matching test. Lab Chip 18(8):1215–1222. https://doi.org/10.1039/c7lc01128h

    Article  CAS  PubMed  Google Scholar 

  22. Lee EJ, Kim B-k, Lee KK (2020) Finger-powered, capillary-driven blood diagnostic chip for point-of-care technology. Sens Actuators, A 312:112153. https://doi.org/10.1016/j.sna.2020.112153

    Article  CAS  Google Scholar 

  23. Peng C, Zhang Z, Kim CJ et al (2014) EWOD (electrowetting on dielectric) digital microfluidics powered by finger actuation. Lab Chip 14(6):1117–1122. https://doi.org/10.1039/c3lc51223a

    Article  CAS  PubMed  Google Scholar 

  24. Peng C, Wang Y, SungtaekJu Y (2016) Finger-powered electrophoretic transport of discrete droplets for portable digital microfluidics. Lab Chip 16(13):2521–31. https://doi.org/10.1039/c6lc00219

    Article  CAS  PubMed  Google Scholar 

  25. Haque ME, Conde AJ, Macpherson WN et al (2022) A microfluidic finger-actuated blood lysate preparation device enabled by rapid acoustofluidic mixing. Lab Chip 23(1):62–71. https://doi.org/10.1039/d2lc00968d

    Article  CAS  PubMed  Google Scholar 

  26. Mazloum J, Shamsi A (2020) 3D design and numerical simulation of a check-valve micropump for lab-on-a-chip applications. J Micro-Bio Robot 16(2):237–248. https://doi.org/10.1007/s12213-020-00139-y

    Article  Google Scholar 

  27. Lim H, Jafry AT, Lee J (2019) Fabrication, flow control, and applications of microfluidic paper-based analytical devices. Molecules 24(16):2869. https://doi.org/10.3390/molecules24162869

  28. Lu CH, Shih TS, Shih PC et al (2020) Finger-powered agglutination lab chip with CMOS image sensing for rapid point-of-care diagnosis applications. Lab Chip 20(2):424–433. https://doi.org/10.1039/c9lc00961b

    Article  CAS  PubMed  Google Scholar 

  29. Lee Y-S, Lu Y-T, Chang C-M et al (2022) Finger-powered cell-sorting microsystem chip for cancer-study applications. Sens Actuators, B Chem 370:132430. https://doi.org/10.1016/j.snb.2022.132430

    Article  CAS  Google Scholar 

  30. Hoeppener AE, Swennenhuis JF, Terstappen LW (2012) Immunomagnetic separation technologies. Recent Results Cancer Res 195:43–58. https://doi.org/10.1007/978-3-642-28160-0_4

    Article  PubMed  Google Scholar 

  31. Park YM, Park J, Lim SY et al (2021) Integrated pumpless microfluidic chip for the detection of foodborne pathogens by polymerase chain reaction and electrochemical analysis. Sens Actuators, B Chem 329:129130. https://doi.org/10.1016/j.snb.2020.129130

    Article  CAS  Google Scholar 

  32. Park J, Lee KG, Han DH et al (2021) Pushbutton-activated microfluidic dropenser for droplet digital PCR. Biosens Bioelectron 181:113159. https://doi.org/10.1016/j.bios.2021.113159

    Article  CAS  PubMed  Google Scholar 

  33. Khan MI, Zhang Q, Tian Y et al (2023) Point of care testing (POCT) of cholesterol in blood serum via a moving reaction boundary electrophoresis titration chip. Anal Methods 15(24):2971–2978. https://doi.org/10.1039/D3AY00550J

    Article  CAS  PubMed  Google Scholar 

  34. Nie J, Guo L, Liu Y et al (2024) Heavy metals high-sensitive detection by laser-induced breakdown spectroscopy based on radial electroosmotic flow-driven enrichment. Talanta 267:125199. https://doi.org/10.1016/j.talanta.2023.125199

    Article  CAS  PubMed  Google Scholar 

  35. Park YM, Lim SY, Shin SJ et al (2018) A film-based integrated chip for gene amplification and electrochemical detection of pathogens causing foodborne illnesses. Anal Chim Acta 1027:57–66. https://doi.org/10.1016/j.aca.2018.03.061

    Article  CAS  PubMed  Google Scholar 

  36. Yin B, Wan X, Qian C et al (2021) Point-of-care testing for multiple cardiac markers based on a snail-shaped microfluidic chip. Front Chem 9:741058. https://doi.org/10.3389/fchem.2021.741058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qi W, Zheng L, Hou Y et al (2022) A finger-actuated microfluidic biosensor for colorimetric detection of foodborne pathogens. Food Chem 381:131801. https://doi.org/10.1016/j.foodchem.2021.131801

    Article  CAS  PubMed  Google Scholar 

  38. Park J, Han DH, Hwang SH et al (2020) Reciprocating flow-assisted nucleic acid purification using a finger-actuated microfluidic device. Lab Chip 20(18):3346–3353. https://doi.org/10.1039/d0lc00432d

    Article  CAS  PubMed  Google Scholar 

  39. Park J, Park JK (2019) Finger-actuated microfluidic display for smart blood typing. Anal Chem 91(18):11636–11642. https://doi.org/10.1021/acs.analchem.9b02129

    Article  CAS  PubMed  Google Scholar 

  40. Chen P, Chen C, Su H et al (2021) Integrated and finger-actuated microfluidic chip for point-of-care testing of multiple pathogens. Talanta 224:121844. https://doi.org/10.1016/j.talanta.2020.121844

    Article  CAS  PubMed  Google Scholar 

  41. Park J, Roh H, Park JK (2019) Finger-actuated microfluidic concentration gradient generator compatible with a microplate. Micromachines (Basel) 10(3):174. https://doi.org/10.3390/mi10030174

  42. Han J, Lim HJ, Park J et al (2023) On-chip microfluidic dual detection of amino acid metabolism disorders using cell-free protein synthesis. Biosens Bioelectron 222:114936. https://doi.org/10.1016/j.bios.2022.114936

    Article  CAS  PubMed  Google Scholar 

  43. Park J, Park JK (2019) Integrated microfluidic pumps and valves operated by finger actuation. Lab Chip 19(18):2973–2977. https://doi.org/10.1039/c9lc00422j

    Article  CAS  PubMed  Google Scholar 

  44. Lee KW, Yang EK, Oh Y et al (2023) Immunogenicity monitoring cell chip incorporating finger-actuated microfluidic and colorimetric paper-based analytical functions. BioChip J 17(3):329–339. https://doi.org/10.1007/s13206-023-00111-5

    Article  CAS  Google Scholar 

  45. Ameri AR, Imanparast A, Passandideh-Fard M et al (2022) A whole-thermoplastic microfluidic chip with integrated on-chip micropump, bioreactor and oxygenator for cell culture applications. Anal Chim Acta 1221:340093. https://doi.org/10.1016/j.aca.2022.340093

    Article  CAS  PubMed  Google Scholar 

  46. Saini A, Rai S, Maiti D et al (2022) Exploring the cobalt-histidine complex for wide-ranging colorimetric O(2) detection. ACS Omega 7(31):27734–27741. https://doi.org/10.1021/acsomega.2c03904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao VXT, Wong TI, Zheng XT et al (2020) Colorimetric biosensors for point-of-care virus detections. Mater Sci Energy Technol 3:237–249. https://doi.org/10.1016/j.mset.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  48. Lipka E, Charton J, Vaccher C (2014) Development of HPLC/fluorescence detection method for chiral resolution of dansylated benzimidazoles derivatives. Biomed Chromatogr 28(1):4–9. https://doi.org/10.1002/bmc.2992

    Article  CAS  PubMed  Google Scholar 

  49. Wei Y, Ren Z, Liu C et al (2022) All-fiber biological detection microfluidic chip based on space division and wavelength division multiplexing technologies. Lab Chip 22(23):4501–4510. https://doi.org/10.1039/d2lc00681b

    Article  CAS  PubMed  Google Scholar 

  50. Yin B, Wan X, Sohan A et al (2022) Microfluidics-based POCT for SARS-CoV-2 diagnostics. Micromachines (Basel) 13(8):1238. https://doi.org/10.3390/mi13081238

  51. Park J, Han DH, Park JK (2020) Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Lab Chip 20(7):1191–1203. https://doi.org/10.1039/d0lc00047g

    Article  CAS  PubMed  Google Scholar 

  52. Zhu Z, Guan Z, Jia S et al (2014) Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew Chem Int Ed Engl 53(46):12503–12507. https://doi.org/10.1002/anie.201405995

    Article  CAS  PubMed  Google Scholar 

  53. Poujouly C, Le Gall J, Freisa M et al (2022) Microfluidic chip for the electrochemical detection of microRNAs: methylene blue increasing the specificity of the biosensor. Front Chem 10:868909. https://doi.org/10.3389/fchem.2022.868909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sweet E, Mehta R, Xu Y et al (2020) Finger-powered fluidic actuation and mixing via MultiJet 3D printing. Lab Chip 20(18):3375–3385. https://doi.org/10.1039/d0lc00488j

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was kindly supported by the National Natural Science Foundation (32201185) and the Fujian Provincial Department of Science and Technology (2021H6008).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Z.D. and L.C.; methodology, L.C.; validation, Z.D. and L.C.; formal analysis, L.C.; investigation, L.C.; resources, Z.D. and S.Y.; data curation, X.X.; writing—original draft preparation, L.C.; writing—review and editing, Z.D.; visualization, Z.D. and L.C.; supervision, Z.D. and S.Y.; project administration, Z.D. and S.Y.; funding acquisition, Z.D. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ling Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Chen, L. & Yang, S. Advancements in the research of finger-actuated POCT chips. Microchim Acta 191, 65 (2024). https://doi.org/10.1007/s00604-023-06140-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06140-z

Keywords

Navigation