Skip to main content
Log in

Adjustable luminescence copper nanoclusters nanoswitch based on competitive coordination of samarium ions for cascade detection of adenosine triphosphate and acid phosphatase activity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Benefit from the strong coordination property, lanthanide metal ions have been used as competitive reagents to modulate the fluorescence changes of the system. However, lanthanide metal ions as inducers for aggregation-induced emission enhancement in nanosystems is rare. Herein, we report a “turn on–off-on” fluorescent switch for cascade detection of acid phosphatase (ACP) and adenosine triphosphate (ATP) based on the competitive coordination of samarium ions (Sm3+). Novel copper nanoclusters (CuNCs) with long wavelength emission (614 nm) stabilized by glutathione (GSH) and glycylglycine (Gly-Gly) have been confirmed to have AIE property. With the continuous aggregation of GSH/Gly-Gly CuNCs under the induction of Sm3+, the fluorescence of the system increased to achieve the “turn-on” process. The coordinated behaviour between Sm3+ and GSH/Gly-Gly CuNCs is discussed. Due to the strong metal coordination ability of ATP, the Sm3+ coordinated with the GSH/Gly-Gly CuNCs is competed out, resulting in the fluorescence “turn-off” process of the system. As the substrate of enzymatic hydrolysis of ACP, with the continuous hydrolysis of ATP by ACP, Sm3+ coordinates with GSH/Gly-Gly CuNCs again, which leads to the AIE effect and realize the fluorescence "turn-on" process of the system. This strategy results in ATP linear range of 0.508 ~ 120.0 μM with a detection limit of 0.508 μM (S/N = 3) and ACP linear range of 0.011 ~ 30.0 U·L−1 with a detection limit of 0.011 U·L−1 (S/N = 3). Application to biologic samples was successful.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data generated or analyzed during this study are included in this article and its supplementary file.

References

  1. Kwok RTK, Leung CWT, Lam JWY, Tang BZ (2015) Biosensing by luminogens with aggregation-induced emission characteristics. Chem Soc Rev 44:4228–4238. https://doi.org/10.1039/C4CS00325J

    Article  CAS  PubMed  Google Scholar 

  2. Asad M, Anwar MI, Abbas A, Younas A, Hussain S, Gao R, Li L-K, Shahid M, Khan S (2022) AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coord Chem Rev 463:214539. https://doi.org/10.1016/j.ccr.2022.214539

    Article  CAS  Google Scholar 

  3. Wang D, Tang BZ (2019) Aggregation-induced emission luminogens for activity-based sensing. Acc Chem Res 52:2559–2570. https://doi.org/10.1021/acs.accounts.9b00305

    Article  CAS  PubMed  Google Scholar 

  4. Wu W, Liu B (2021) Aggregation-induced emission: challenges and opportunities. National ScienceReview 8:222. https://doi.org/10.1093/nsr/nwaa222

    Article  CAS  Google Scholar 

  5. Liu Y, Chen X, Liu X, Guan W, Lu C (2023) Aggregation-induced emission-active micelles: synthesis, characterization, and applications. Chem Soc Rev 52:1456–1490. https://doi.org/10.1039/d2cs01021f

    Article  CAS  PubMed  Google Scholar 

  6. Prakash KT, Singh N, Venkatesh V (2019) Synthesis of novel luminescent copper nanoclusters with substituent driven self-assembly and aggregation induced emission (AIE). Chem Commun (Camb) 55:322–325. https://doi.org/10.1039/c8cc09109a

    Article  CAS  PubMed  Google Scholar 

  7. Shen J, Wen X, Fan Z (2023) Tandem detection of aluminum ion and norfloxacin by Au-doped copper nanoclusters based on AIE and coordination reaction. Sens Actuators, B Chem 381:133436. https://doi.org/10.1016/j.snb.2023.133436

    Article  CAS  Google Scholar 

  8. Li X, Zhang X, Cao H, Huang Y, Feng P (2021) Tb3+ tuning AIE self-assembly of copper nanoclusters for sensitively sensing trace fluoride ions. Sens Actuators, B Chem 342:130071. https://doi.org/10.1016/j.snb.2021.130071

    Article  CAS  Google Scholar 

  9. Geng F, Zou C, Liu J, Zhang Q, Guo X, Fan Y, Yu H, Yang S, Liu Z, Li L (2019) Development of luminescent nanoswitch for sensing of alkaline phosphatase in human serum based onAl3+-PPi interaction and Cu NCs with AIE properties. Anal Chim Acta 1076:131–137. https://doi.org/10.1016/j.aca.2019.05.026

    Article  CAS  PubMed  Google Scholar 

  10. Zhao M, Qian Z, Zhong M, Chen Z, Ao H, Feng H (2017) Fabrication of stable and luminescent copper nanocluster-based AIE particles and their application in β-galactosidase activity assay. ACS Appl Mater Interfaces 9:32887–32895. https://doi.org/10.1021/acsami.7b09659

    Article  CAS  PubMed  Google Scholar 

  11. Gao Y, Wei K, Li J, Li Y, Hu J (2018) A facile four-armed AIE fluorescent sensor for heparin and protamine. Sens Actuators, B Chem 277:408–414. https://doi.org/10.1016/j.snb.2018.09.054

    Article  CAS  Google Scholar 

  12. Wang Z, Shi Y, Yang X, Xiong Y, Li Y, Chen B, Lai W-F, Rogach AL (2018) Water-soluble biocompatible copolymer hypromellose grafted chitosan able to load exogenous agents and copper nanoclusters with aggregation-induced emission. Adv Funct Mater 28:1802848. https://doi.org/10.1002/adfm.201802848

    Article  CAS  Google Scholar 

  13. Huang X, Lan M, Wang J, Guo L, Lin Z, Sun N, Wu C, Qiu B (2020) A fluorescence signal amplification and specific energy transfer strategy for sensitive detection of β-galactosidase based on the effects of AIE and host-guest recognition. Biosens Bioelectron 169:112655. https://doi.org/10.1016/j.bios.2020.112655

    Article  CAS  PubMed  Google Scholar 

  14. Qu F, Yang Q, Wang B, You J (2020) Aggregation-induced emission of copper nanoclusters triggered by synergistic effect of dual metal ions and the application in the detection of H2O2 and related biomolecules. Talanta 207:120289. https://doi.org/10.1016/j.talanta.2019.120289

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Bao H, Ma D-L, Leung C-H (2018) Silver nanoclusters functionalized with Ce(III) ions are a viable “turn-on-off” fluorescent probe for sulfide. Mikrochim Acta 186:16. https://doi.org/10.1007/s00604-018-3149-z

    Article  CAS  PubMed  Google Scholar 

  16. Pan T, Zhou T, Tu Y, Yan J (2021) Turn-on fluorescence measurement of acid phosphatase activity through an aggregation-induced emission of thiolate-protected gold nanoclusters. Talanta 227:122197. https://doi.org/10.1016/j.talanta.2021.122197

    Article  CAS  PubMed  Google Scholar 

  17. Bull H, Murray PG, Thomas D, Fraser AM, Nelson PN (2002) Acid phosphatases. Mol0 Pathol MP 55:65–72. https://doi.org/10.1136/mp.55.2.65

    Article  CAS  Google Scholar 

  18. Yin C, Wu M, Liu H, Sun Q, Sun X, Niu N, Xu J, Chen L (2022) Reversible AIE self-assembled nanohybrids coordinated by La3+ for ratiometric visual acid phosphatase monitoring and intracellular imaging. Sens Actuators, B Chem 371:132550. https://doi.org/10.1016/j.snb.2022.132550

    Article  CAS  Google Scholar 

  19. Chen S, Chen X-B, Liu W-Y, Yu Y-L, Liu M-X (2023) Phosphorescence, fluorescence, and colorimetric triple-mode sensor for the detection of acid phosphatase and corresponding inhibitor. Anal Chim Acta 1275:341612. https://doi.org/10.1016/j.aca.2023.341612

    Article  CAS  PubMed  Google Scholar 

  20. Lin Z, Liu Z, Zhang H, Su X (2015) Near-infrared fluorescence probe for the determination of acid phosphatase and imaging of prostate cancer cells. Analyst 140:1629–1636. https://doi.org/10.1039/c4an01868k

    Article  CAS  PubMed  Google Scholar 

  21. Yan X, Xia C, Chen B, Li YF, Gao PF, Huang CZ (2020) Enzyme activity triggered blocking of plasmon resonance energy transfer for highly selective detection of acid phosphatase. Anal Chem 92:2130–2135. https://doi.org/10.1021/acs.analchem.9b04685

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Ye LY, Mo YY, Yang H (2022) Highly sensitive fluorescent quantification of acid phosphatase activity and its inhibitor pesticide Dufulin by a functional metal-organic framework nanosensor for environment assessment and food safety. Food Chem 370:131034. https://doi.org/10.1016/j.foodchem.2021.131034

    Article  CAS  PubMed  Google Scholar 

  23. Chen S, Li Z, Xue R, Huang Z, Jia Q (2022) Confining copper nanoclusters in three dimensional mesoporous silica particles: Fabrication of an enhanced emission platform for "turn off-on" detection of acid phosphatase activity. Anal Chim Acta 1192:339387. https://doi.org/10.1016/j.aca.2021.339387

    Article  CAS  PubMed  Google Scholar 

  24. Li S, Fu G, Wang Y, Xiang Y, Mu S, Xu Y, Liu X, Zhang H (2021) A dual-signal fluorescent probe for detection of acid phosphatase. Anal Bioanal Chem 413:3925–3932. https://doi.org/10.1007/s00216-021-03343-2

    Article  CAS  PubMed  Google Scholar 

  25. Ran F, Ma C, Xiang Y, Xu Y, Liu X, Zhang H (2021) A fluorescent and colorimetric dual-channel sensor based on acid phosphatase-triggered blocking of internal filtration effect. Mikrochim Acta 188:282. https://doi.org/10.1007/s00604-021-04951-6

    Article  CAS  PubMed  Google Scholar 

  26. Zhu Z, Lin X, Wu L, Zhao C, Li S, Liu A, Lin X, Lin L (2019) Nitrogen-doped carbon dots as a ratiometric fluorescent probe for determination of the activity of acid phosphatase, for inhibitor screening, and for intracellular imaging. Mikrochim Acta 186:558. https://doi.org/10.1007/s00604-019-3600-9

    Article  CAS  PubMed  Google Scholar 

  27. You J-G, Lu C-Y, Krishna Kumar AS, Tseng W-L (2018) Cerium(iii)-directed assembly of glutathione-capped gold nanoclusters for sensing and imaging of alkaline phosphatase-mediated hydrolysis of adenosine triphosphate. Nanoscale 10:17691–17698. https://doi.org/10.1039/C8NR05050C

    Article  CAS  PubMed  Google Scholar 

  28. Wang G, Su X, Xu Q, Xu G, Lin J, Luo X (2018) Antifouling aptasensor for the detection of adenosine triphosphate in biological media based on mixed self-assembled aptamer and zwitterionic peptide. Biosens Bioelectron 101:129–134. https://doi.org/10.1016/j.bios.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  29. Singh VR, Singh PK (2020) A supramolecule based fluorescence turn-on and ratiometric sensor for ATP in aqueous solution. J Mater Chem B 8:1182–1190. https://doi.org/10.1039/C9TB02403D

    Article  CAS  PubMed  Google Scholar 

  30. Chu B, Wang A, Cheng L, Chen R, Shi H, Song B, Dong F, Wang H, He Y (2021) Ex vivo and in vivo fluorescence detection and imaging of adenosine triphosphate. J Nanobiotechnology 19:187. https://doi.org/10.1186/s12951-021-00930-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen C, Yuan Q, Ni P, Jiang Y, Zhao Z, Lu Y (2018) Fluorescence assay for alkaline phosphatase based on ATP hydrolysis-triggered dissociation of cerium coordination polymer nanoparticles. Analyst 143:3821–3828. https://doi.org/10.1039/C8AN00787J

    Article  CAS  PubMed  Google Scholar 

  32. Thammajinno S, Buranachai C, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C (2022) A copper nanoclusters probe for dual detection of microalbumin and creatinine, Spectrochimica acta. Part A, Mol Biomol Spectrosc 270:120816. https://doi.org/10.1016/j.saa.2021.120816

    Article  CAS  Google Scholar 

  33. Li W, Wang X, Jiang T, Ma X, Tian H (2020) One-pot synthesis of β-cyclodextrin modified Au nanoclusters with near-infrared emission. Chem Commun (Camb) 56:5580–5583. https://doi.org/10.1039/d0cc00713g

    Article  CAS  PubMed  Google Scholar 

  34. Qi D-Y, Wang C, Gao Y-C, Li H-W, Wu Y (2022) Heteroatom doping and supramolecular assembly promoted copper nanoclusters to be a stable & high fluorescence sensor for trace amounts of ATP determination. Sens Actuators, B Chem 358:131469. https://doi.org/10.1016/j.snb.2022.131469

    Article  CAS  Google Scholar 

  35. Li X, Hao S, Wang Z, Zhao C, Wang Z (2022) Improving the electrical conductivity and electrochemical performance of LiMn2O4 by Sm gaseous penetration technology. Appl Surf Sci 599:153923. https://doi.org/10.1016/j.apsusc.2022.153923

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Young and Middle-aged Teacher Education Research Project of Fujian Province (JAT220256).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuemin Huang or Bin Qiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 764 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Chen, H., Huang, R. et al. Adjustable luminescence copper nanoclusters nanoswitch based on competitive coordination of samarium ions for cascade detection of adenosine triphosphate and acid phosphatase activity. Microchim Acta 191, 54 (2024). https://doi.org/10.1007/s00604-023-06138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06138-7

Keywords

Navigation