Skip to main content
Log in

Carbon-coated copper nanocrystals with enhanced peroxidase-like activity for sensitive colorimetric determination of 2,4-dinitrophenylhydrazine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon-coated copper nanocrystals (CuNCs) with peroxidase-like activity were hydrothermally prepared by using copper acetate, citric acid (CA) and histidine (His) as the precursors. Various shaped CuNCs, including urchin-like, slab-like and spherical appearance were facilely prepared by addition of different amount of NaNO2 in the precursor solutions. When 3,3′,5,5′-tetramethylbenzidine (TMB) was used as the substrate, the CuNCs with urchin-like appearance have greatest peroxidase-like activity and their Michaelis–Menten constant (Km) and the maximum rate constant (νmax) are respectively 8.8 and 1.2 times higher than that obtained from horseradish peroxidase (HRP). The production of reactive oxygen species (ROS) was confirmed by radical quenching and electron spin resonance (ESR) tests. Subsequent studies have found that the CuNCs catalyzed color reaction of TMB can be selectively quenched by the environmental pollutant 2,4-dinitrophenylhydrazine (2,4-DNPH). Thus a new colorimetric method for the determination of 2,4-DNPH with a linear range of 0.60–20 µM was developed and a limit of detection (LOD) as low as 0.166 µM was achieved. The results obtained not only reveal the tunability of the peroxidase-like activity of Cu-based nanomaterials, but also provide a new method for the sensitive determination of environmental contaminate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the fundings of this study are available within the article [and/or its supplementatry materials].

References

  1. Fedor MJ, Williamson JR (2005) The catalytic diversity of RNAS, 1. Nat Rev Mol Cell Biol 6(5):399–412. https://doi.org/10.1038/nrm1647

    Article  CAS  PubMed  Google Scholar 

  2. Dawson JH (1988) Probing structure-function relations in heme-containing oxygenases and peroxidases. Science (New York, N.Y.) 240(4851):433–439. https://doi.org/10.1126/science.3358128

    Article  CAS  PubMed  Google Scholar 

  3. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412. https://doi.org/10.1021/acs.chemrev.8b00672

    Article  CAS  PubMed  Google Scholar 

  4. Ge C, Wu R, Chong Y, Fang G, Jiang X, Pan Y, Chen C, Yin J-J (2018) Synthesis of Pt hollow nanodendrites with enhanced peroxidase-Like activity against bacterial infections: implication for wound healing. Adv Funct Mater 28(28):1801484. https://doi.org/10.1002/adfm.201801484

    Article  CAS  Google Scholar 

  5. Xin Q, Jia X, Nawaz A, Xie W, Li L, Gong JR (2020) Mimicking peroxidase active site microenvironment by functionalized graphene quantum dots. Nano Res 13(5):1427–1433. https://doi.org/10.1007/s12274-020-2678-z

    Article  CAS  Google Scholar 

  6. Chen L, Sun B, Wang X, Qiao F, Ai S (2013) 2D ultrathin nanosheets of Co-Al layered double hydroxides prepared in L-asparagine solution: enhanced peroxidase-like activity and colorimetric detection of glucose. J Mater Chem B 1(17):2268–2274. https://doi.org/10.1039/c3tb00044c

    Article  CAS  PubMed  Google Scholar 

  7. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  8. Liu Q, Zhang A, Wang R, Zhang Q, Cui D (2021) A Review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett 13(1):154. https://doi.org/10.1007/s40820-021-00674-8

    Article  CAS  Google Scholar 

  9. Lyu Z, Shang Y, Xia Y (2022) Shape-controlled synthesis of copper nanocrystals for plasmonic, biomedical, and electrocatalytic applications. Acc Mater Res 3(11):1137–1148. https://doi.org/10.1021/accountsmr.2c00134

    Article  CAS  Google Scholar 

  10. Brillas E, Banos MA, Camps S, Arias C, Cabot PL, Garrido JA, Rodriguez RM (2004) Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J Chem 28(2):314–322. https://doi.org/10.1039/b312445b

    Article  CAS  Google Scholar 

  11. Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L (2019) Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J Am Chem Soc 141(2):849–857. https://doi.org/10.1021/jacs.8b08714

    Article  CAS  PubMed  Google Scholar 

  12. Xi J, Wei G, An L, Xu Z, Xu Z, Fan L, Gao L (2020) Copper/carbon hybrid nanozyme: tuning catalytic activity by the copper state for antibacterial therapy (vol 19, pg 7645, 2019). Nano Lett 20(1):800–800. https://doi.org/10.1021/acs.nanolett.9b02242

    Article  CAS  PubMed  Google Scholar 

  13. Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Wu C, Mao Z, Luo G, Chen X, Deng J (2020) Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun 11(1):2788. https://doi.org/10.1038/s41467-020-16544-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Z, Wang S-S, Song R, Cao T, Luo L, Chen X, Gao Y, Lu J, Li W-X, Huang W (2017) The most active Cu facet for low-temperature water gas shift reaction. Nat Commun 8:488. https://doi.org/10.1038/s41467-017-00620-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim D, Kley CS, Li Y, Yang P (2017) Copper nanoparticle ensembles for selective electroreduction of CO2 to C-2-C-3 products. Proc Natl Acad Sci U S A 114(40):10560–10565. https://doi.org/10.1073/pnas.1711493114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pileni MP, Ninham BW, Gulik-Krzywicki T, Tanori J, Lisiecki I, Filankembo A (1999) Direct relationship between shape and size of template and synthesis of copper metal particles. Adv Mater 11(16):1358–1362. https://doi.org/10.1016/j.jcrysgro.2019.05.028

    Article  CAS  Google Scholar 

  17. Joshi SS, Patil SF, Iyer V, Mahumuni S (1998) Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct Mater 10(7):1135–1144. https://doi.org/10.1016/S0965-9773(98)00153-6

    Article  CAS  Google Scholar 

  18. Su X, Zhao J, Bala H, Zhu Y, Gao Y, Ma S, Wang Z (2007) Fast synthesis of stable cubic copper nanocages in the aqueous phase. J Phys Chem C 111(40):14689–14693. https://doi.org/10.1021/jp074550w

    Article  CAS  Google Scholar 

  19. Xie SY, Ma ZJ, Wang CF, Lin SC, Jiang ZY, Huang RB, Zheng LS (2004) Preparation and self-assembly of copper nanoparticles via discharge of copper rod electrodes in a surfactant solution: a combination of physical and chemical processes. J Solid State Chem 177(10):3743–3747. https://doi.org/10.1016/j.jssc.2004.07.012

    Article  CAS  Google Scholar 

  20. Hu Y, He Y, Han Y, Ge Y, Song G, Zhou J (2018) Determination of the activity of alkaline phosphatase based on aggregation-induced quenching of the fluorescence of copper nanoclusters. Microchim Acta 186(1):5. https://doi.org/10.1007/s00604-018-3122-x

    Article  CAS  Google Scholar 

  21. Lee S-W, Kim M-S, Jeong JH, Kim D-H, Chung KY, Roh KC, Kim K-B (2017) Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: Improved thermal stability and high-voltage performance. J Power Sources 360:206–214. https://doi.org/10.1016/j.jpowsour.2017.05.042

    Article  CAS  Google Scholar 

  22. Behdadfar B, Kermanpur A, Sadeghi-Aliabadi H, del Puerto Morales M, Mozaffari M (2012) Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route. J Solid State Chem 187:20–26. https://doi.org/10.1016/j.jssc.2011.12.011

    Article  CAS  Google Scholar 

  23. Ragavan KV, Rastogi NK (2016) Graphene-copper oxide nanocomposite with intrinsic peroxidase activity for enhancement of chemiluminescence signals and its application for detection of Bisphenol-A. Sens Actuators B 229:570–580. https://doi.org/10.1016/j.snb.2016.02.017

    Article  CAS  Google Scholar 

  24. Yang D, Li Q, Tammina SK, Gao Z, Yang Y (2020) Cu-CDs/H2O2 system with peroxidase-like activities at neutral pH for the co-catalytic oxidation of o-phenylenediamine and inhibition of catalytic activity by Cr(III). Sens Actuators B 319:128273. https://doi.org/10.1016/j.snb.2020.128273

    Article  CAS  Google Scholar 

  25. Herricks T, Chen J, Xia Y (2004) Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Lett 4(12):2367–2371. https://doi.org/10.1021/nl048570a

    Article  CAS  Google Scholar 

  26. Garcia-Alonso S, Maria Bernal-Paez A, Maria Perez-Pastor R (2021) Reduced solvent and reagent amounts: effect on carbonyl dinitrophenylhydrazone measurements at low concentrations. Anal Methods 13(16):1976–1985. https://doi.org/10.1039/d0ay02288h

    Article  CAS  PubMed  Google Scholar 

  27. Malaei R, Ramezani AM, Absalan G (2018) Analysis of malondialdehyde in human plasma samples through derivatization with 2,4-dinitrophenylhydrazine by ultrasound-assisted dispersive liquid-liquid microextraction-GC-FID approach. Anal Methods 1089:60–69. https://doi.org/10.1016/j.jchromb.2018.05.001

    Article  CAS  Google Scholar 

  28. Zhang E, Ju P, Zhang Z, Yang H, Tang L, Hou X, You J, Wang J-J (2019) A novel multi-purpose Zn-MOF fluorescent sensor for 2,4-dinitrophenylhydrazine, picric acid, La3+ and Ca2+: Synthesis, structure, selectivity, sensitivity and recyclability. Spectrochim Acta Part A 222:117207. https://doi.org/10.1016/j.saa.2019.117207

    Article  CAS  Google Scholar 

  29. Jiao X, Marin L, Cheng X (2022) Fluorescent cellulose/testing paper for the sensitive and selective recognition of explosives 2,4,6-trinitrophenol and 2,4-dinitrophenylhydrazine. J Photochem Photobiol A 424:113632. https://doi.org/10.1016/j.jphotochem.2021.113632

    Article  CAS  Google Scholar 

  30. Koyappayil A, Kim HT, Lee MH (2021) ‘Laccase-like’ properties of coral-like silver citrate micro-structures for the degradation and determination of phenolic pollutants and adrenaline. J Hazard Mater 412:125211. https://doi.org/10.1016/j.jhazmat.2021.125211

    Article  CAS  PubMed  Google Scholar 

  31. Zuo YG, Deng YW (1998) The near-UV absorption constants for nitrite ion in aqueous solution. Chemosphere 36(1):181–188. https://doi.org/10.1016/S0045-6535(97)10028-5

    Article  CAS  Google Scholar 

  32. Lu W, Yuan M, Chen J, Zhang J, Kong L, Feng Z, Ma X, Su J, Zhan J (2021) Synergistic Lewis acid-base sites of ultrathin porous Co3O4 nanosheets with enhanced peroxidase-like activity. Nano Res 14(10):3514–3522. https://doi.org/10.1007/s12274-021-3656-9

    Article  CAS  Google Scholar 

  33. Wang J, Huang R, Qi W, Su R, He Z (2022) Preparation of amorphous MOF based biomimetic nanozyme with high laccase- and catecholase-like activity for the degradation and detection of phenolic compounds. Chem Eng J 434:134677. https://doi.org/10.1016/j.cej.2022.134677

    Article  CAS  Google Scholar 

  34. Yang L, Li N, Guo C, He J, Wang S, Qiao L, Li F, Yu L, Wang M, Xu X (2021) Marine biomass-derived composite aerogels for efficient and durable solar-driven interfacial evaporation and desalination. Chem Eng J 417:128051. https://doi.org/10.1016/j.cej.2020.128051

    Article  CAS  Google Scholar 

  35. Zhong Y, Liao P, Kang J, Liu Q, Wang S, Li S, Liu X, Li G (2023) Locking effect in metal@MOF with superior stability for highly chemoselective catalysis. J Am Chem Soc 145(8):4659–4666. https://doi.org/10.1021/jacs.2c12590

    Article  CAS  PubMed  Google Scholar 

  36. Jin G, Liu J, Wang C, Gu W, Ran G, Liu B, Song Q (2020) Ir nanoparticles with multi-enzyme activities and its application in the selective oxidation of aromatic alcohols. Appl Catal B 267:118725. https://doi.org/10.1016/j.apcatb.2020.118725

    Article  CAS  Google Scholar 

  37. Rahman MZ, Tapping PC, Kee TW, Smernik R, Spooner N, Moffatt J, Tang Y, Davey K, Qiao SZ (2017) A benchmark quantum yield for water photoreduction on amorphous carbon nitride. Adv Funct Mater 27(39):1702384. https://doi.org/10.1002/adfm.201702384

    Article  CAS  Google Scholar 

  38. Zhao G, Liu S, Zhang X, Zhang Y, Shi H, Liu Y, Hou L, Yuan C (2023) Construction of Co@N-CNTs grown on N-MoxC nanosheets for separator modification to enhance adsorption and catalytic conversion of polysulfides in Li–S batteries. J Mater Chem A 11(4):1856–1865. https://doi.org/10.1039/d2ta09123b

    Article  CAS  Google Scholar 

  39. Wang J, Huang R, Qi W, Su R, He Z (2022) Construction of biomimetic nanozyme with high laccase- and catecholase-like activity for oxidation and detection of phenolic compounds. J Hazard Mater 429:128404. https://doi.org/10.1016/j.jhazmat.2022.128404

    Article  CAS  PubMed  Google Scholar 

  40. Liu J, Wang X, Ma F, Yang X, Liu Y, Zhang X, Guo S, Wang Z, Yang S, Zhao R (2022) Atomic copper(I)-carbon nitride as a peroxidase-mimic catalyst for high selective detection of perfluorooctane sulfonate. Chem Eng J 435:134966. https://doi.org/10.1016/j.cej.2022.134966

    Article  CAS  Google Scholar 

  41. Lei L, Song D, Fan L, Liu B, He M, Sun X, Xu W, Tao K, Huang H, Li Y (2022) Determination of catechin and glutathione using copper aspartate nanofibers with multiple enzyme-like activities. Microchim Acta 189(2):61. https://doi.org/10.1007/s00604-021-05160-x

    Article  CAS  Google Scholar 

  42. Hu L, Yuan Y, Zhang L, Zhao J, Majeed S, Xu G (2013) Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta 762:83–86. https://doi.org/10.1016/j.aca.2012.11.056

    Article  CAS  PubMed  Google Scholar 

  43. Yang S, Yang X, Shao X, Niu R, Wang L (2011) Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. J Hazard Mater 186(1):659–666. https://doi.org/10.1016/j.jhazmat.2010.11.057

    Article  CAS  PubMed  Google Scholar 

  44. Shen B, Dong C, Ji J, Xing M, Zhang J (2019) Efficient Fe(III)/Fe(II) cycling triggered by MoO2 in Fenton reaction for the degradation of dye molecules and the reduction of Cr(VI). Chin Chem Lett 30(12):2205–2210. https://doi.org/10.1016/j.cclet.2019.09.052

    Article  CAS  Google Scholar 

  45. Dou J, Cheng J, Lu Z, Tian Z, Xu J, He Y (2022) Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process. Appl Catal B 301:120832. https://doi.org/10.1016/j.apcatb.2021.120832

    Article  CAS  Google Scholar 

  46. Wang D, Marin L, Cheng X (2022) Chitosan-bodipy macromolecular fluorescent probes prepared by click reactions for highly sensitive and selective recognition of 2,4-dinitrophenylhydrazine. New J Chem 46(43):20699–20710. https://doi.org/10.1039/d2nj03923k

    Article  CAS  Google Scholar 

  47. Dong S, Lian X, Chen S, Li H, Liu E, Xu K (2021) Kinetic analysis and mechanism study on the photocatalytic degradation of 2,4-dinitrophenylhydrazine over surface plasmonic Ag/Cu/TiO2 composite. React Kinet Mech Catal 134(1):485–499. https://doi.org/10.1007/s11144-021-02054-0

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Fundamental Research Funds for the Central Universities (JUSRP22027). We would like to acknowledge the work of Central Laboratory, School of Chemical and Material Engineering, Jiangnan University.

Author information

Authors and Affiliations

Authors

Contributions

Zhanghong Guo: Methodology, experiments and writing-original draft. Lin Zhou: Results validation. Xuan Chen: Results validation. Qijun Song: Methodology, writing-review & editing, supervision, funding acquisition.

Corresponding author

Correspondence to Qijun Song.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2475 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Zhou, L., Chen, X. et al. Carbon-coated copper nanocrystals with enhanced peroxidase-like activity for sensitive colorimetric determination of 2,4-dinitrophenylhydrazine. Microchim Acta 191, 37 (2024). https://doi.org/10.1007/s00604-023-06127-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06127-w

Keywords

Navigation