Skip to main content
Log in

Green Preparation of Cu Nanoparticles via Gallic Acid Applied to H2O2 Detection

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Research into metal nanoparticles has increased, and they have been increasingly used in non-enzymatic sensor applications. However, there have been few reports on the use of natural products to prepare non-precious metal nanoparticles in an eco-friendly (green) manner. Studies were conducted on Cu nanoparticles (Cu NPs) prepared by the use of natural gallic acid (GA). This method is environmentally friendly and can be applied to H2O2 detection. As-obtained Cu NPs were characterized by x-ray photoelectron spectroscopy (XPS), powder x-ray diffraction (XRD), and transmission electron microscopy (TEM). When applied to H2O2 detection, Cu NPs had good sensitivity, stability, and anti-interference properties. Its electrochemical performance is no less than that of precious metal nanomaterials. Cu NPs mainly exhibit good sensitivity, reaching 5.74 μA mM-1 cm-2; the concentration range thereof is 1–20 mM. The process of constructing nanoparticles in this work used natural products, making it environmentally friendly and proving the practicality of constructing non-precious metal nanoparticles and the feasibility of their application to H2O2 detection.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Gao, F. Yang, Q. Yu, R. Fan, M. Yang, S. Rao, Q. Lan, and Z. Yang, Mikrochim. Acta. 186, 192 (2019). https://doi.org/10.1007/s00604-019-3263-6.

    Article  CAS  Google Scholar 

  2. S. Daemi, S. Ghasemi, and A. Akbar Ashkarran, J. Colloid Interface Sci. 550, 180 (2019). https://doi.org/10.1016/j.jcis.2019.04.091.

    Article  CAS  Google Scholar 

  3. X. Wu, F. Li, C. Zhao, and X. Qian, Sensors Actuat. B Chem. 274, 163 (2018). https://doi.org/10.1016/j.snb.2018.07.141.

    Article  CAS  Google Scholar 

  4. D. Cheng, T. Wang, G. Zhang, H. Wu, and H. Mei, J. Alloys Compounds. 819, 153014 (2020). https://doi.org/10.1016/j.jallcom.2019.153014.

    Article  CAS  Google Scholar 

  5. B.J. Brownlee, M. Bahari, J.N. Harb, J.C. Claussen, and B.D. Iverson, ACS Appl. Mater. Interfaces. 10, 28351 (2018). https://doi.org/10.1021/acsami.8b08997.

    Article  CAS  Google Scholar 

  6. Y. Ren, F.Y. Wang, Z.J. Chen, R.T. Lan, R.H. Huang, W.Q. Fu, R.M. Gul, J. Wang, J.Z. Xu, and Z.M. Li, J. Mater. Chem. B. 8, 10428 (2020). https://doi.org/10.1039/d0tb01677b.

    Article  CAS  Google Scholar 

  7. T. Dayakar, K.V. Rao, K. Bikshalu, V. Malapati, and K.K. Sadasivuni, Biosens Bioelectron. 111, 166 (2018). https://doi.org/10.1016/j.bios.2018.03.063.

    Article  CAS  Google Scholar 

  8. Y. Su, H. Guo, Z. Wang, Y. Long, W. Li, and Y. Tu, Sens. Actuat. B Chem. 255, 2510 (2018). https://doi.org/10.1016/j.snb.2017.09.056.

    Article  CAS  Google Scholar 

  9. D. Yin, X. Bo, J. Liu, and L. Guo, Anal. Chim. Acta 1038, 11–20 (2018). https://doi.org/10.1016/j.aca.2018.06.086.

    Article  CAS  Google Scholar 

  10. S. Cheng, S. DelaCruz, C. Chen, Z. Tang, T. Shi, C. Carraro, and R. Maboudian, Sens. Actuat. B Chem. 298, 126860 (2019). https://doi.org/10.1016/j.snb.2019.126860.

    Article  CAS  Google Scholar 

  11. X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong, and W. Hu, Adv. Energy Mater. 8, 1800935 (2018). https://doi.org/10.1002/aenm.201870110.

    Article  CAS  Google Scholar 

  12. Y. Zhang, Q. Wang, D. Liu, Q. Wang, T. Li, and Z. Wang, Appl. Surf. Sci. 521, 146434 (2020). https://doi.org/10.1016/j.apsusc.2020.146434.

    Article  CAS  Google Scholar 

  13. C. Yuan, B.W. Hao, Y. Xie, and X.W. Lou, Angewandte Chemie International ed. in English. 53, 1488 (2014). https://doi.org/10.1002/anie.201303971.

    Article  CAS  Google Scholar 

  14. K. Bindu, and H.S. Nagaraja, Mater. Res. Exp. 6, 095015 (2019). https://doi.org/10.1088/2053-1591/ab2ca8.

    Article  CAS  Google Scholar 

  15. M.S. Garud, and Y.A. Kulkarni, Chem. Biol. Interact. 282, 69 (2018). https://doi.org/10.1016/j.cbi.2018.01.010.

    Article  CAS  Google Scholar 

  16. A. Aydogdu, G. Sumnu, and S. Sahin, Carbohyd. Polym. 208, 241 (2019). https://doi.org/10.1016/j.carbpol.2018.12.065.

    Article  CAS  Google Scholar 

  17. Q. Luo, J.R. Zhang, H.B. Li, D.T. Wu, F. Geng, H. Corke, X.L. Wei, and R.Y. Gan, Antioxidants (Basel). 9, 785 (2020). https://doi.org/10.3390/antiox9090785.

    Article  CAS  Google Scholar 

  18. A. Lunkov, B. Shagdarova, M. Konovalova, Y. Zhuikova, N. Drozd, A. Il’ina, and V. Varlamov, Carbohydr. Polym. 234, 115916 (2020). https://doi.org/10.1016/j.carbpol.2020.115916.

    Article  CAS  Google Scholar 

  19. Y. Rong, B. Cao, B. Liu, W. Li, Y. Chen, H. Chen, Y. Liu, and T. Liu, Int. Immunopharmacol. 64, 183 (2018). https://doi.org/10.1016/j.intimp.2018.08.024.

    Article  CAS  Google Scholar 

  20. S. Li, W. Tang, P. Shi, M. Li, J. Sun, and J. Gong, Cryst. Growth Des. 20, 3173 (2020). https://doi.org/10.1021/acs.cgd.0c00044.

    Article  CAS  Google Scholar 

  21. M. Zhang, X. Zhang, C.T. Ho, and Q. Huang, J. Agric. Food Chem. 67, 5374 (2019). https://doi.org/10.1021/acs.jafc.8b04837.

    Article  CAS  Google Scholar 

  22. P. Chaikul, N. Khat-udomkiri, K. Iangthanarat, J. Manosroi, and A. Manosroi, Eur. J. Pharm. Sci. 131, 39 (2019). https://doi.org/10.1016/j.ejps.2019.02.008.

    Article  CAS  Google Scholar 

  23. J. Li, S.Y. Kim, X. Chen, and H.J. Park, LWT Food Sci. Technol. 68, 667 (2016). https://doi.org/10.1016/j.lwt.2016.01.012.

    Article  CAS  Google Scholar 

  24. N.A.A. Zahrani, R.M. El-Shishtawy, and A.M. Asiri, Eur. J. Med. Chem. 204, 112609 (2020). https://doi.org/10.1016/j.ejmech.2020.112609.

    Article  CAS  Google Scholar 

  25. F.H.A. Fernandes, and H.R.N. Salgado, Crit. Rev. Anal. Chem. 46, 257 (2015). https://doi.org/10.1080/10408347.2015.1095064.

    Article  CAS  Google Scholar 

  26. J. Yang, Z. Li, T. Guang, M. Hu, R. Cheng, R. Wang, C. Shi, J. Chen, P. Hou, K. Zhu, and X. Wang, Green Chem. 20, 5215 (2018). https://doi.org/10.1039/c8gc02584c.

    Article  CAS  Google Scholar 

  27. A. Mahajan, A. Arya, and T.S. Chundawat, Synth. Commun. 49, 1926 (2019). https://doi.org/10.1080/00397911.2019.1610776.

    Article  CAS  Google Scholar 

  28. O. Rocha-Rocha, M. Cortez-Valadez, A.R. Hernández-Martínez, R. Gámez-Corrales, R.A.B. Alvarez, R. Britto-Hurtado, Y. Delgado-Beleño, C.E. Martinez-Nuñez, A. Pérez-Rodríguez, H. Arizpe-Chávez, and M. Flores-Acosta, J. Electron. Mater. 46, 802 (2016). https://doi.org/10.1007/s11664-016-4942-2.

    Article  CAS  Google Scholar 

  29. Y. Wang, D. O’Connor, Z. Shen, I.M.C. Lo, D.C.W. Tsang, S. Pehkonen, S. Pu, and D. Hou, J. Clean. Prod. 22, 540–549 (2019). https://doi.org/10.1016/j.jclepro.2019.04.128.

    Article  CAS  Google Scholar 

  30. C.W. Han, M. Ma, H.H. Zhang, M. Li, and Q.J. Sun, Food Chem. 308, 125676 (2020). https://doi.org/10.1016/j.foodchem.2019.125676.

    Article  CAS  Google Scholar 

  31. C.B.V. Buiten, J.D. Lambert, and R.J. Elias, Mol. Nutr. Food Res. 62, e1700879 (2018). https://doi.org/10.1002/mnfr.201700879.

    Article  CAS  Google Scholar 

  32. P. Manivasagan, S.Y. Nam, and J. Oh, Crit. Rev. Microbiol. 42, 1007 (2016). https://doi.org/10.3109/1040841x.2015.1137860.

    Article  CAS  Google Scholar 

  33. H.E. Emam, and M.M. El-Zawahry, Carbohydr. Polym. 166, 1 (2017). https://doi.org/10.1016/j.carbpol.2017.02.091.

    Article  CAS  Google Scholar 

  34. W. Lu, Y. Sun, H. Dai, P. Ni, S. Jiang, Y. Wang, Z. Li, and Z. Li, Sens. Actuat. B Chem. 231, 860 (2016). https://doi.org/10.1016/j.snb.2016.03.058.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (No. 51873175), the Young Teachers Research Capacity Promotion Program of Northwest Normal University (NWNU-LKQN-16-19), Special Foundation projects for guiding technological innovation and development of Gansu Province (No. 2019ZX-05), and the University research and innovation team project of Gansu Province (No. 2018C-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, W., Ding, X., Jiang, F. et al. Green Preparation of Cu Nanoparticles via Gallic Acid Applied to H2O2 Detection. J. Electron. Mater. 51, 1752–1758 (2022). https://doi.org/10.1007/s11664-021-09200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09200-3

Keywords

Navigation