Skip to main content
Log in

COF-300-AR@CRL as a two-in-one nanocatalyst for one-step chemiluminescent detection of diphenyl ether herbicide residues in vegetable and fruit samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive and accurate chemiluminescence (CL) method was developed for one-step determination of diphenyl ether herbicides at trace level with nitrofen (2,4-dichlorophenyl-p-nitrophenyl ether) as a model analyte. Candida rugosa lipase (CRL) was immobilized on a nanocarrier of amine-linked covalent organic framework (named as COF-300-AR) through a self-assembly strategy. The formed nanocomposite of COF-300-AR@CRL owns dual enzymatic catalytic activities. It can directly catalyze luminol-dissolved oxygen reaction to produce an intense CL emission by virtue of oxidase mimic activity of COF-300-AR but also effectively decompose nitrofen to release phenolic compounds by the immobilized CRL. The released phenolic compounds own strong reducing capacity and in turn decrease the CL signal sharply. Under the optimal conditions, the decreased CL intensity presents a good linear response to nitrofen concentration in the 0.02–50.0 μM range. The limit of detection (LOD, 3sb/S) is 11 nM and the precision is 2.0% for replicate measurements of 50.0 nM nitrofen solution (n = 11). This method has the advantages of rapid analytical efficiency, good selectivity, satisfactory stability, and recyclability. Recovery experiments were conducted on spiked vegetable and fruit samples with the recoveries falling in the range 90.0–107.0%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon reasonable request.

References

  1. Peillex C, Pelletier M (2020) The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J Immunotoxicol 17:163–174. https://doi.org/10.1080/1547691X.2020.1804492

    Article  CAS  PubMed  Google Scholar 

  2. Ribeiro YM, Moreira DP, Weber AA, Sales CF, Melo RMC, Bazzoli N, Rizzo E, Paschoalini AL (2022) Adverse effects of herbicides in freshwater Neotropical fish: a review. Aquat Toxicol 252:106293. https://doi.org/10.1016/j.aquatox.2022.106293

    Article  CAS  PubMed  Google Scholar 

  3. Tsai WT (2013) A review on environmental exposure and health risks of herbicide. paraquat. Toxicol Environ Chem 95:197–206. https://doi.org/10.1080/02772248.2012.761999

    Article  CAS  Google Scholar 

  4. Huang DC, You MS, Hou YM, Li ZS (2005) Effects of chemical herbicides on bio-communities in agroecosystems. Acta Ecologica Sinica 25:1451–1458

    CAS  Google Scholar 

  5. Triantafyllidis V, Mavroeidis A, Kosma C, Karabagias IK, Zotos A, Kehayias G, Beslemes D, Roussis I, Bilalis D, Economou G (2023) Herbicide use in the era of farm to fork: strengths, weaknesses, and future implications. Water Air Soil Poll 234:94. https://doi.org/10.1007/s11270-023-06125-x

    Article  CAS  Google Scholar 

  6. Romero-Lopez M, Oria M, Ferrer-Marquez F, Varela MF, Lampe K, Watanabe-Chailland M, Martinez L, Peiro JL (2023) Fetal lung hypoxia and energetic cell failure in the nitrofen–induced congenital diaphragmatic hernia rat model. Pediatr Surg Int 39:180. https://doi.org/10.1007/s00383-023-05452-8

    Article  Google Scholar 

  7. http://www.moa.gov.cn/ztzl/ncpzxzz/flfg/200709/t20070919_893058.htm. Accessed 5 July 2023

  8. Wang MT, Zhou X, Zang XH, Pang YC, Chang Q, Wang C, Wang Z (2018) Determination of pesticides residues in vegetable and fruit samples by solid-phase microextraction with a covalent organic framework as the fiber coating coupled with gas chromatography and electron capture detection. J Sep Sci 41:4038–4046. https://doi.org/10.1002/jssc.201800644

    Article  CAS  PubMed  Google Scholar 

  9. Pang YC, Zang XH, Wang MT, Chang QY, Zhang SH, Wang C, Wang Z (2018) Fibrous boron nitride nanocomposite for magnetic solid phase extraction of ten pesticides prior to the quantitation by gas chromatography. Microchim Acta 185:561. https://doi.org/10.1007/s00604-018-3103-0

    Article  CAS  Google Scholar 

  10. Bodur S, Balurdere EG (2019) Simultaneous determination of selected herbicides in dam lake, river and well water samples by gas chromatography mass spectrometry after vortex assisted binary solvent liquid phase microextraction. Microchem J 145:168–172. https://doi.org/10.1016/j.microc.2018.10.033

    Article  CAS  Google Scholar 

  11. Turan NB, Bakirdere S (2021) A miniaturized spray-assisted fine-droplet-formation-based liquid-phase microextraction method for the simultaneous determination of fenpiclonil, nitrofen and fenoxaprop-ethyl as pesticides in soil samples. Rapid Commun Mass Spectrom 35:e8943. https://doi.org/10.1002/rcm.8943

    Article  CAS  PubMed  Google Scholar 

  12. Yan M, Jia YQ, Qi PR, Wang YH, Ji QQ, Wang MM, Wang Q, Hao YL (2021) Determination of three diphenyl ether herbicides in rice by magnetic solid phase extraction using Fe3O4@MOF-808 coupled with high performance liquid chromatography. Chin J Chromatogr 39:316–323. https://doi.org/10.3724/SP.J.1123.2020.06007

    Article  CAS  Google Scholar 

  13. Wang P, Xu XX, Guo LL, Liu LQ, Kuang H, Xiao J, Xu CL (2023) Hapten synthesis and a colloidal gold immunochromatographic strip assay to detect nitrofen and bifenox in fruits. Analyst 148:2449–2458. https://doi.org/10.1039/d3an00358b

    Article  CAS  PubMed  Google Scholar 

  14. Mandal W, Fajal S, Samanta P, Dutta S, Shirolkar MM, More YD, Ghosh SK (2022) Selective and sensitive recognition of specific types of toxic organic pollutants with a chemically stable highly luminescent porous organic polymer (POP). ACS Appl Polym Mater 4:8633–8644. https://doi.org/10.1021/acsapm.2c01538

    Article  CAS  Google Scholar 

  15. Cheng YF, Ma BK, Tan CP, Lai OM, Panpipat W, Cheong LZ, Shen C (2020) Hierarchical macro-microporous ZIF-8 nanostructures as efficient nano-lipase carriers for rapid and direct electrochemical detection of nitrogenous diphenyl ether pesticides. Sensor Actuat B-Chem 321:128477. https://doi.org/10.1016/j.snb.2020.128477

    Article  CAS  Google Scholar 

  16. Cheng YF, Lai OM, Tan CP, Panpipat W, Cheong LZ, Shen C (2021) Proline-modified UIO-66 as nanocarriers to enhance Candida rugosa lipase catalytic activity and stability for electrochemical detection of nitrofen. ACS Appl Mater Inter 13:4146–4155. https://doi.org/10.1021/acsami.0c17134

    Article  CAS  Google Scholar 

  17. Chen YX, Yuan GS, Tan LC, Wang P, Lu RW, Wang CJ (2022) Hollow hierarchical Cu-BTC as nanocarriers to immobilize lipase for electrochemical biosensor. J Inorg Organomet Polym Mater 32:4401–4411. https://doi.org/10.1007/s10904-022-02434-6

    Article  CAS  Google Scholar 

  18. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662. https://doi.org/10.1016/S0734-9750(01)00086-6

    Article  CAS  PubMed  Google Scholar 

  19. Ismail AR, Baek KH (2020) Lipase immobilization with support materials, preparation techniques, and applications: present and future aspects. Int J Biol Macromol 163:1624–1639. https://doi.org/10.1016/j.ijbiomac.2020.09.021

    Article  CAS  PubMed  Google Scholar 

  20. Zhao G, Dong X, Du Y, Zhang N, Bai G, Wu D, Ma H, Wang Y, Cao W, Wei Q (2022) Enhancing electrochemiluminescence efficiency through introducing atomically dispersed ruthenium in nickel-based metal-organic frameworks. Anal Chem 94:10557–10566. https://doi.org/10.1021/acs.analchem.2c02334

    Article  CAS  PubMed  Google Scholar 

  21. Gan JS, Bagheri AR, Aramesh N, Gul I, Franco M, Almulaiky YQ, Bilal M (2021) Covalent organic frameworks as emerging host platforms for enzyme immobilization and robust biocatalysis-a review. Int J Biol Macromol 167:502515. https://doi.org/10.1016/j.ijbiomac.2020.12.002

    Article  CAS  Google Scholar 

  22. Wang SZ, Xia XC, Chen FE (2022) Engineering of covalent organic framework–based advanced platforms for enzyme immobilization: strategies, research progress, and prospects. Adv Mater Interfaces 9:2200874. https://doi.org/10.1002/admi.202200874

    Article  CAS  Google Scholar 

  23. Oliveira FL, França AD, de Castro AM, de Souza ROMA, Esteves PM, Gonçalves RSB (2020) Enzyme immobilization in covalent organic frameworks: strategies and applications in biocatalysis. ChemPlusChem 85:2051–2066. https://doi.org/10.1002/cplu.202000549

    Article  CAS  PubMed  Google Scholar 

  24. Uribe-Romo FJ, Hunt JR, Furukawa H, Klock C, O’Keeffe M, Yaghi OM (2009) A crystalline imine–linked 3-D porous covalent organic framework. J Am Chem Soc 131:4570–4571. https://doi.org/10.1021/ja8096256

    Article  CAS  PubMed  Google Scholar 

  25. Jin P, Niu X, Zhang F, Dong K, Dai H, Zhang H, Wang W, Chen H, Chen X (2020) Stable and reusable light-responsive reduced covalent organic framework (COF-300-AR) as an oxidase-mimicking catalyst for GSH detection in cell lysate. ACS Appl Mater Inter 12:20414–20422. https://doi.org/10.1021/acsami.0c01763

    Article  CAS  Google Scholar 

  26. Kong M, Jin P, Wei W, Wang W, Qin H, Chen H, He J (2021) Covalent organic frameworks (COF-300-AR) with unique catalytic performance in luminol chemiluminescence for sensitive detection of serotonin. Microchem J 160A:105650. https://doi.org/10.1016/j.microc.2020.105650

    Article  CAS  Google Scholar 

  27. Teng X, Qi L, Liu T, Li LH, Lu C (2023) Nanomaterial-based chemiluminescence systems for tracing of reactive oxygen species in biosensors. TRAC-Trend Anal Chem 162:117020. https://doi.org/10.1016/j.trac.2023.117020

    Article  CAS  Google Scholar 

  28. Wang Y, Zhao G, Chi H, Yang S, Niu Q, Wu D, Cao W, Li T, Ma H, Wei Q (2021) Self-luminescent lanthanide metal-organic frameworks as signal probes in electrochemiluminescence immunoassay. J Am Chem Soc 143:504–512. https://doi.org/10.1021/jacs.0c12449

    Article  CAS  PubMed  Google Scholar 

  29. Tiwari A, Dhoble SJ (2018) Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta 180:1–11. https://doi.org/10.1016/j.talanta.2017.12.031

    Article  CAS  PubMed  Google Scholar 

  30. Al Yahyai I, AI-Lawati HA (2021) A review of recent developments based on chemiluminescence detection systems for pesticides analysis. Luminescence 36:266–277. https://doi.org/10.1002/bio.3947

    Article  CAS  PubMed  Google Scholar 

  31. Chang JF, Yu L, Hou T, Hu RX, Li F (2023) Direct and specific detection of glyphosate using a phosphatase-like nanozyme-mediated chemiluminescence strategy. Anal Chem 95:4479–4485. https://doi.org/10.1021/acs.analchem.2c05198

    Article  CAS  PubMed  Google Scholar 

  32. Ma YY, Zhao YX, Xu XT, Ding SJ, Li YH (2021) Magnetic covalent organic framework immobilized gold nanoparticles with high-efficiency catalytic performance for chemiluminescent detection of pesticide triazophos. Talanta 235:122798. https://doi.org/10.1016/j.talanta.2021.122798

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Shi ZL, Wei L, Zhou B, Tan J, Zhou HL, Zhang YB (2019) Guest-dependent dynamics in a 3D covalent organic framework. J Am Chem Soc 141:3298–3303. https://doi.org/10.1021/jacs.8b13691

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Chu J, Yin Z, Cai X, Zhuang L, Deng H (2018) Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 4:1696–1709. https://doi.org/10.1016/j.chempr.2018.05.003

    Article  CAS  Google Scholar 

  35. Feng JB, Li YY, Zhang Y, Xu YY, Cheng XW (2022) Adsorptive removal of indomethacin and diclofenac from water by polypyrrole doped-GO/COF-300 nanocomposites. Chem Eng J 429:132499. https://doi.org/10.1016/j.cej.2021.132499

    Article  CAS  Google Scholar 

  36. Yuan MY, Xiao SJ, Wu YN, Qiu AT, Guo J, Zhong ZQ, Zhang L (2022) Visual detection of captopril based on the light activated oxidase-mimic activity of covalent organic framework. Microchem J 175:107080. https://doi.org/10.1016/j.microc.2021.107080

    Article  CAS  Google Scholar 

  37. Tan H, Zhao Y, Xu X, Sun Y, Li Y, Du J (2019) A covalent triazine framework as an oxidase mimetic in the luminol chemiluminescence system: application to the determination of the antioxidant rutin. Microchim Acta 187:42. https://doi.org/10.1007/s00604-019-4058-5

    Article  CAS  Google Scholar 

  38. Jin P, Niu X, Gao Z, Xue X, Zhang F, Cheng W, Ren C, Du H, Manyande A, Chen H (2021) Ultrafine platinum nanoparticles supported on covalent organic frameworks as stable and reusable oxidase-like catalysts for cellular glutathione detection. ACS Appl Nano Mater 4:5834–5841. https://doi.org/10.1021/acsanm.1c00752

    Article  CAS  Google Scholar 

  39. Cheng C, Shen C, Lai OM, Tan CP, Cheong LZ (2021) Biomimetic self–assembly of lipase-zeolitic imidazolate frameworks with enhanced biosensing of protox inhibiting herbicides. Anal Methods UK 13:4974–4984. https://doi.org/10.1039/d1ay01307f

    Article  CAS  Google Scholar 

  40. Ministry of Agriculture of the People’s Republic of China Announcement No. 199. National Health and Family Planning Commission of People’s Republic of China and Ministry of Agriculture of People’s Republic of China (2002). https://www.sdtdata.com/fx/fmoa/tsLibCard/122748.html. Accessed 5 July 2023

Download references

Funding

The authors really appreciate the financial support from Natural Science Foundation of Shaanxi Province (Grant No. 2020JM-035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhuan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 270 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Li, Y. COF-300-AR@CRL as a two-in-one nanocatalyst for one-step chemiluminescent detection of diphenyl ether herbicide residues in vegetable and fruit samples. Microchim Acta 190, 492 (2023). https://doi.org/10.1007/s00604-023-06077-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06077-3

Keywords

Navigation