Skip to main content
Log in

Improving the performance and versatility of microfluidic thread electroanalytical devices by automated injection with electronic pipettes: a new and powerful 3D-printed analytical platform

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Microfluidic cotton thread-based electroanalytical devices (μTEDs) are analytical systems with attractive features such as spontaneous passive flow, low cost, minimal waste production, and good sensitivity. Currently, sample injection in µTEDs is performed by hand using manual micropipettes, which have drawbacks such as inconstant speed and position, dependence of skilled analysts, and need of physical effort of operator during prolonged times, leading to poor reproducibility and risk of strain injury. As an alternative to these inconveniences, we propose, for the first time, the use of electronic micropipettes to carry out automated injections in µTEDs. This new approach avoids all disadvantages of manual injections, while also improving the performance, experience, and versatility of µTEDs. The platform developed here is composed by three 3D-printed electrodes (detector) attached to a 3D-printed platform containing an adjustable holder that keeps the electronic pipette in the same x/y/z position. As a proof-of-concept, both injection modes (manual and electronic) were compared using three model analytes (nitrite, paracetamol, and 5-hydroxytryptophan) on µTED with amperometric detection. As result, improved analytical performance (limits of detection between 2.5- and 5-fold lower) was obtained when using electronic injections, as well as better repeatability/reproducibility and higher analytical frequencies. In addition, the determination of paracetamol in urine samples suggested better precision and accuracy for automated injection. Thus, electronic injection is a great advance and changes the state-of-art of µTEDs, mainly considering the use of more modern and versatile electronic pipettes (wider range of pre-programmed modes), which can lead to the development of even more automated systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. https://doi.org/10.1038/nature05058

    Article  CAS  PubMed  Google Scholar 

  2. da Silva ENT, Petroni JM, Lucca BG, Ferreira VS (2017) Pencil graphite leads as simple amperometric sensors for microchip electrophoresis. Electrophoresis 38:2733–2740. https://doi.org/10.1002/elps.201700160

    Article  CAS  Google Scholar 

  3. Mekonnen ML, Workie YA, Su W-N, Hwang BJ (2021) Plasmonic paper substrates for point-of-need applications: recent developments and fabrication methods. Sens Actuators B Chem 345:130401. https://doi.org/10.1016/j.snb.2021.130401

    Article  CAS  Google Scholar 

  4. Wlodarczyk KL, Hand DP, Maroto-Valer MM (2019) Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Sci Rep 9:20215. https://doi.org/10.1038/s41598-019-56711-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lucca BG, Lunte SM, Coltro WKT, Ferreira VS (2014) Separation of natural antioxidants using PDMS electrophoresis microchips coupled with amperometric detection and reverse polarity. Electrophoresis 35:3363–3370. https://doi.org/10.1002/elps.201400359

    Article  CAS  PubMed  Google Scholar 

  6. Siddique A, Meckel T, Stark RW, Narayan S (2017) Improved cell adhesion under shear stress in PDMS microfluidic devices. Colloids Surf B Biointerfaces 150:456–464. https://doi.org/10.1016/j.colsurfb.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  7. Baker CA, Bulloch R, Roper MG (2011) Comparison of separation performance of laser-ablated and wet-etched microfluidic devices. Anal Bioanal Chem 399:1473–1479. https://doi.org/10.1007/s00216-010-4144-3

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Wang W, Ju X-J et al (2015) Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Adv 5:5638–5646. https://doi.org/10.1039/C4RA15907A

    Article  CAS  Google Scholar 

  9. Gale BK, Jafek AR, Lambert CJ et al (2018) A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions (Basel) 3:60. https://doi.org/10.3390/inventions3030060

    Article  Google Scholar 

  10. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826. https://doi.org/10.1021/ac9007573

    Article  CAS  PubMed  Google Scholar 

  11. Yan Y, Kou B, Yan L (2015) Thread-based microfluidic three channel device in combination with thermal lens detection for the determination of copper and zinc. Anal Methods 7:8757–8762. https://doi.org/10.1039/C5AY01458A

    Article  CAS  Google Scholar 

  12. Dossi N, Toniolo R, Terzi F et al (2018) A cotton thread fluidic device with a wall-jet pencil-drawn paper based dual electrode detector. Anal Chim Acta 1040:74–80. https://doi.org/10.1016/j.aca.2018.06.061

    Article  CAS  PubMed  Google Scholar 

  13. Bishop GW, Satterwhite JE, Bhakta S et al (2015) 3D-printed fluidic devices for nanoparticle preparation and flow-injection amperometry using integrated Prussian blue nanoparticle-modified electrodes. Anal Chem 87:5437–5443. https://doi.org/10.1021/acs.analchem.5b00903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X, Tian J, Shen W (2010) Thread as a versatile material for low-cost microfluidic diagnostics. ACS Appl Mater Interfaces 2:1–6. https://doi.org/10.1021/am9006148

    Article  CAS  PubMed  Google Scholar 

  15. Berthier J, Brakke KA, Gosselin D et al (2017) Thread-based microfluidics: flow patterns in homogeneous and heterogeneous microfiber bundles. Med Eng Phys 48:55–61. https://doi.org/10.1016/j.medengphy.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  16. Jing X, Wang H, Huang X et al (2021) Digital image colorimetry detection of carbaryl in food samples based on liquid phase microextraction coupled with a microfluidic thread-based analytical device. Food Chem 337:127971. https://doi.org/10.1016/j.foodchem.2020.127971

    Article  CAS  PubMed  Google Scholar 

  17. Rumaner M, Horowitz L, Ovadya A, Folch A (2019) Thread as a low-cost material for microfluidic assays on intact tumor slices. Micromachines (Basel) 10:481. https://doi.org/10.3390/mi10070481

    Article  PubMed  Google Scholar 

  18. Caetano FR, Carneiro EA, Agustini D et al (2018) Combination of electrochemical biosensor and textile threads: a microfluidic device for phenol determination in tap water. Biosens Bioelectron 99:382–388. https://doi.org/10.1016/j.bios.2017.07.070

    Article  CAS  PubMed  Google Scholar 

  19. Tan W, Powles E, Zhang L, Shen W (2021) Go with the capillary flow Simple thread-based microfluidics. Sens Actuators B Chem 334:129670. https://doi.org/10.1016/j.snb.2021.129670

    Article  CAS  Google Scholar 

  20. Agustini D, Bergamini MF, Marcolino-Junior LH (2016) Low cost microfluidic device based on cotton threads for electroanalytical application. Lab Chip 16:345–352. https://doi.org/10.1039/C5LC01348H

    Article  CAS  PubMed  Google Scholar 

  21. Agustini D, Bergamini MF, Marcolino-Junior LH (2017) Characterization and optimization of low cost microfluidic thread based electroanalytical device for micro flow injection analysis. Anal Chim Acta 951:108–115. https://doi.org/10.1016/j.aca.2016.11.046

    Article  CAS  PubMed  Google Scholar 

  22. Carvalho RM, Ferreira VS, Lucca BG (2021) A novel all-3D-printed thread-based microfluidic device with an embedded electrochemical detector: first application in environmental analysis of nitrite. Anal Methods 13:1349–1357. https://doi.org/10.1039/d1ay00070e

    Article  CAS  PubMed  Google Scholar 

  23. Agustini D, Fedalto L, Agustini D et al (2020) A low cost, versatile and chromatographic device for microfluidic amperometric analyses. Sens Actuators B Chem 304:127117. https://doi.org/10.1016/j.snb.2019.127117

    Article  CAS  Google Scholar 

  24. Ochiai LM, Agustini D, Figueiredo-Filho LCS et al (2017) Electroanalytical thread-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes. Sens Actuators B Chem 241:978–984. https://doi.org/10.1016/j.snb.2016.10.150

    Article  CAS  Google Scholar 

  25. Yamashita RA, Carvalho RM, Petroni JM et al (2022) 3D-printed microfluidic thread device with integrated detector: a green and portable tool for amperometric detection of fungicide benzovindiflupyr in forensic samples. Microchem J 182:107853. https://doi.org/10.1016/j.microc.2022.107853

    Article  CAS  Google Scholar 

  26. Oliveira ACM, Araújo DAG, Pradela-Filho LA et al (2022) Threads in tubing: an innovative approach towards improved electrochemical thread-based microfluidic devices. Lab Chip 22:3045–3054. https://doi.org/10.1039/D2LC00387B

    Article  CAS  PubMed  Google Scholar 

  27. Lippi G, Lima-Oliveira G, Brocco G et al (2017) Estimating the intra- and inter-individual imprecision of manual pipetting. Clin Chem Lab Med 55:962–966. https://doi.org/10.1515/cclm-2016-0810

    Article  CAS  PubMed  Google Scholar 

  28. Pandya K, Ray CA, Brunner L et al (2010) Strategies to minimize variability and bias associated with manual pipetting in ligand binding assays to assure data quality of protein therapeutic quantification. J Pharm Biomed Anal 53:623–630. https://doi.org/10.1016/j.jpba.2010.04.025

    Article  CAS  PubMed  Google Scholar 

  29. Rehan M, El-Naggar ME, Mashaly HM, Wilken R (2018) Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics. Carbohydr Polym 182:29–41. https://doi.org/10.1016/j.carbpol.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  30. Laube N, Mohr B, Hesse A (2001) Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines. J Cryst Growth 233:367–374. https://doi.org/10.1016/S0022-0248(01)01547-0

    Article  CAS  Google Scholar 

  31. Haššo M, Švorc Ľ (2022) Batch injection analysis in tandem with electrochemical detection: the recent trends and an overview of the latest applications (2015–2020). Monatsh Chem 153:985–1000. https://doi.org/10.1007/s00706-022-02898-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rocha DP, Cardoso RM, Tormin TF et al (2018) Batch-injection analysis better than ever: new materials for improved electrochemical detection and on-site applications. Electroanalysis 30:1386–1399. https://doi.org/10.1002/elan.201800042

    Article  CAS  Google Scholar 

  33. Asundi KR, Bach JM, Rempel DM (2005) Thumb force and muscle loads are influenced by the design of a mechanical pipette and by pipetting tasks. Hum Factors 47:67–76. https://doi.org/10.1518/0018720053653848

    Article  PubMed  Google Scholar 

  34. Kim E, Aqlan F, Freivalds A (2020) Development of an ergonomic four-finger-push manual pipette design. Appl Ergon 85:103045. https://doi.org/10.1016/J.APERGO.2020.103045

    Article  PubMed  Google Scholar 

  35. Wang J, Chen L, Angnes L, Tian B (1992) Computerized pipettes with programmable dispension. Anal Chim Acta 267:171–177. https://doi.org/10.1016/0003-2670(92)85020-7

    Article  CAS  Google Scholar 

  36. de Moraes NC, Petroni JM, de Lima F et al (2022) Paper-based electrochemical platform modified with graphene nanoribbons: a new and affordable approach for analysis of 5-hydroxy-l-tryptophan. Microchem J 183:108030. https://doi.org/10.1016/J.MICROC.2022.108030

    Article  Google Scholar 

  37. de Moraes NC, da Silva ENT, Petroni JM et al (2020) Design of novel, simple, and inexpensive 3D printing-based miniaturized electrochemical platform containing embedded disposable detector for analytical applications. Electrophoresis 41:278–286. https://doi.org/10.1002/elps.201900270

    Article  CAS  PubMed  Google Scholar 

  38. Ferreira PA, de Oliveira FM, de Melo EI et al (2021) Multi sensor compatible 3D-printed electrochemical cell for voltammetric drug screening. Anal Chim Acta 1169:338568. https://doi.org/10.1016/j.aca.2021.338568

    Article  CAS  PubMed  Google Scholar 

  39. Mocak J, Bond AM, Mitchell S, Scollary G (1997) A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report). Pure Appl Chem 69:297–328. https://doi.org/10.1351/pac199769020297

    Article  CAS  Google Scholar 

  40. Kumar N, Rosy GRN (2017) Palladium nano particles decorated multi-walled carbon nanotubes modified sensor for the determination of 5-hydroxytryptophan in biological fluids. Sens Actuators B Chem 239:1060–1068. https://doi.org/10.1016/j.snb.2016.08.122

    Article  CAS  Google Scholar 

  41. Kumar N, Goyal RN (2020) Simultaneous determination of melatonin and 5-hydroxytrptophan at the disposable poly-(melamine)/poly-(o-aminophenol) composite modified screen printed sensor. J Electroanal Chem (Lausanne) 874:114458. https://doi.org/10.1016/j.jelechem.2020.114458

    Article  CAS  Google Scholar 

  42. Ghanei-Motlagh M, Taher MA (2018) A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosens Bioelectron 109:279–285. https://doi.org/10.1016/j.bios.2018.02.057

    Article  CAS  PubMed  Google Scholar 

  43. Pal A, Amreen K, Dubey SK, Goel S (2021) Highly sensitive and interference-free electrochemical nitrite detection in a 3D printed miniaturized device. IEEE Trans, Nanobioscience 20:175–182. https://doi.org/10.1109/TNB.2021.3063730

    Article  PubMed  Google Scholar 

  44. Ibanez-Redin G, Wilson D, Goncalves D, Oliveira ON Jr (2018) Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. J Colloid Interface Sci 515:101–108. https://doi.org/10.1016/j.jcis.2017.12.085

    Article  CAS  PubMed  Google Scholar 

  45. Weheabby S, Wu Z, Al-Hamry A et al (2023) Paracetamol detection in environmental and pharmaceutical samples using multi-walled carbon nanotubes decorated with silver nanoparticles. Microchem J 193:109192. https://doi.org/10.1016/j.microc.2023.109192

    Article  CAS  Google Scholar 

  46. Tadayon F, Naghinejad R, Daneshinejad H (2016) A sensitive and selective electrochemical method for the simultaneous determination of dopamine and paracetamol based on a multiwalled carbon nanotubes/poly(l-lysine)-modified glassy carbon electrode. Chem Lett 45:1006–1008. https://doi.org/10.1246/cl.160420

    Article  CAS  Google Scholar 

  47. Baccarin M, Santos FA, Vicentini FC et al (2017) Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples. J Electroanal Chem (Lausanne) 799:436–443. https://doi.org/10.1016/j.jelechem.2017.06.052

    Article  CAS  Google Scholar 

  48. Kannan A, Sevvel R (2017) A highly selective and simultaneous determination of paracetamol and dopamine using poly-4-amino-6-hydroxy-2-mercaptopyrimidine (poly-AHMP) film modified glassy carbon electrode. J Electroanal Chem (Lausanne) 791:8–16. https://doi.org/10.1016/j.jelechem.2017.03.002

    Article  CAS  Google Scholar 

  49. Vishnu N, Sihorwala AZ, Sharma CS (2021) Paper based low-cost and portable ultrasensitive electroanalytical device for the detection of uric acid in human urine. ChemistrySelect 6:8426–8434. https://doi.org/10.1002/slct.202101632

    Article  CAS  Google Scholar 

Download references

Funding

Authors would like to thank the financial support given by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—grant n° 407581/2021–9, Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT)—process nº 71/032.955/2022, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Gabriel Lucca.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 18276 KB)

Supplementary file2 (MP4 10128 KB)

Supplementary file3 (MP4 26553 KB)

Supplementary file4 (PDF 1.47 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moraes, N.C., Carvalho, R.M., Ferreira, V.S. et al. Improving the performance and versatility of microfluidic thread electroanalytical devices by automated injection with electronic pipettes: a new and powerful 3D-printed analytical platform. Microchim Acta 190, 461 (2023). https://doi.org/10.1007/s00604-023-06026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06026-0

Keywords

Navigation