Skip to main content
Log in

Comparison of separation performance of laser-ablated and wet-etched microfluidic devices

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Laser ablation of glass allows for production of microfluidic devices without the need for hydrofluoric acid and photolithography. The goal of this study was to compare the separation performance of microfluidic devices produced using a low-cost laser ablation system and conventional wet etching. During laser ablation, cracking of the glass substrate was prevented by heating the glass to 300 °C. A range of laser energy densities was found to produce channel depths ranging from 4 to 35 μm and channel widths from 118 to 162 μm. The electroosmotic flow velocity was lower in laser-ablated devices, 0.110 ± 0.005 cm   s−1, as compared to wet-etched microfluidic chips, 0.126 ± 0.003 cm   s−1. Separations of both small and large molecules performed on both wet- and laser-ablated devices were compared by examining limits of detection, theoretical plate count, and peak asymmetry. Laser-induced fluorescence detection limits were 10 pM fluorescein for both types of devices. Laser-ablated and wet-etched microfluidic chips had reproducible migration times with ≤   2.8% relative standard deviation and peak asymmetries ranged from 1.0 to 1.8. Numbers of theoretical plates were between 2.8- and 6.2-fold higher on the wet-etched devices compared to laser-ablated devices. Nevertheless, resolution between small and large analytes was accomplished, which indicates that laser ablation may find an application in pedagogical studies of electrophoresis or microfluidic devices, or in settings where hydrofluoric acid cannot be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sanders GHW, Manz A (2000) TRAC-Trend Anal Chem 19:364–378

    Article  CAS  Google Scholar 

  2. Gao J, Xu JD, Locascio LE, Lee CS (2001) Anal Chem 73:2648–2655

    Article  CAS  Google Scholar 

  3. Luk VN, Wheeler AR (2009) Anal Chem 81:4524–4530

    Article  CAS  Google Scholar 

  4. Foquet M, Korlach J, Zipfel W, Webb WW, Craighead HG (2002) Anal Chem 74:1415–1422

    Article  CAS  Google Scholar 

  5. Kopp MU, de Mello AJ, Manz A (1998) Science 280:1046–1048

    Article  CAS  Google Scholar 

  6. Hua ZS, Rouse JL, Eckhardt AE, Srinivasan V, Pamula VK, Schell WA, Benton JL, Mitchell TG, Pollack MG (2010) Anal Chem 82:2310–2316

    Article  CAS  Google Scholar 

  7. Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM (2004) Proc Natl Acad Sci U S A 101:9740–9744

    Article  Google Scholar 

  8. Marcus JS, Anderson WF, Quake SR (2006) Anal Chem 78:956–958

    Article  CAS  Google Scholar 

  9. Okagbare PI, Soper SA (2009) Analyst 134:97–106

    Article  CAS  Google Scholar 

  10. Duffy DC, McDonald C, Schueller OJA, Whitesides GM (1998) Anal Chem 70:4974–4984

    Article  CAS  Google Scholar 

  11. Chen D, Du WB, Liu Y, Liu WS, Kuznetsov A, Mendez FE, Philipson LH, Ismagilov RF (2008) Proc Natl Acad Sci U S A 105:16843–16848

    Article  CAS  Google Scholar 

  12. Quake SR, Sherer A (2000) Science 290:1536–1540

    Article  CAS  Google Scholar 

  13. Thorsen T, Maerkl SJ, Quake SR (2002) Science 298:580–584

    Article  CAS  Google Scholar 

  14. Lee JN, Park C, Whitesides GM (2003) Anal Chem 75:6544–6554

    Article  CAS  Google Scholar 

  15. Roman GT, McDaniel K, Culbertson CT (2006) Analyst 131:194–201

    Article  CAS  Google Scholar 

  16. Makamba H, Kim JH, Lim K, Park N, Hahn JH (2003) Electrophoresis 24:3607–3619

    Article  CAS  Google Scholar 

  17. Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Science 261:895–897

    Article  CAS  Google Scholar 

  18. Klank H, Kutter JP, Geschke O (2002) Lab Chip 2:242–246

    Article  CAS  Google Scholar 

  19. Pugmire DL, Waddell EA, Tarlov HR, LE MJ L (2002) Anal Chem 74:871–878

    Article  CAS  Google Scholar 

  20. Yen MH, Cheng JY, Wei CW, Chuang YC, Young TH (2006) J Micromech Microeng 16:1143–1153

    Article  CAS  Google Scholar 

  21. Schaffer CB, Brodeur A, Garcia JF, Mazur E (2001) Opt Lett 26:93–95

    Article  CAS  Google Scholar 

  22. Li Y, Itoh K, Watanabe W, Yamada K, Kuroda D, Nishii J, Jiang Y (2001) Opt Lett 26:1912–1914

    Article  CAS  Google Scholar 

  23. Sugioka K, Hanada Y, Midorikawa K (2010) Laser Photonics Rev 4:386–400

    Article  CAS  Google Scholar 

  24. Baker CA, Roper MG (2010) J Chrom A 1217:4743–4748

    Article  CAS  Google Scholar 

  25. Huang XH, Gordon MJ, Zare RN (1988) Anal Chem 60:1837–1838

    Article  CAS  Google Scholar 

  26. Hatch A, Kamholz AE, Hawkins KR, Munson MS, Schilling EA, Weigl BH, Yager P (2001) Nat Biotechnol 19:461–465

    Article  CAS  Google Scholar 

  27. Breadmore MC, Wolfe KA, Arcibal IG, Leung WK, Dickson D, Giordano BC, Power ME, Ferrance JP, Feldman SH, Norris PM, Landers JP (2003) Anal Chem 75:1880–1886

    Article  CAS  Google Scholar 

  28. Song H, Ismagilov RF (2003) J Am Chem Soc 125:14613–14619

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by a grant from the National Institutes of Health (R01 DK080714). We would like to thank the faculty and staff of the Florida State University FormLab for their work in administering the laser etching facilities. We would also like to thank Dr. Eric Lochner in the Department of Physics at Florida State University for acquiring the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Roper.

Additional information

Christopher A. Baker and Rayford Bulloch contributed equally to this work.

Published in the special issue Separation Science of Macromolecules with guest editor André Striegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, C.A., Bulloch, R. & Roper, M.G. Comparison of separation performance of laser-ablated and wet-etched microfluidic devices. Anal Bioanal Chem 399, 1473–1479 (2011). https://doi.org/10.1007/s00216-010-4144-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4144-3

Keywords

Navigation