Skip to main content
Log in

Construction of nanohybrid Tb@CDs/GSH-CuNCs as a ratiometric probe to detect phosphate anion based on aggregation-induced emission and FRET mechanism

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The simple preparation of a nanohybrid of terbium-doped carbon dots/glutathione-capped copper nanoclusters (Tb@CDs/GSH-CuNCs) was for the first time developed for ratiometric detection of phosphate anion (Pi). Blue-emission of Tb@CDs can trigger non-luminescence of GSH-CuNCs for aggregation-induced emission (AIE) performance due to the strong reserved coordination capacity of Tb3+. Thus, Tb@CDs/GSH-CuNCs rapidly generated dual-emission signals at 630 nm and 545 nm by directly mixing the two individual materials via the AIE effect, alongside fluorescence resonance energy transfer (FRET) process. However, by the introduction of Pi, both AIE and FRET processes were blocked because of the stronger binding affinity of Tb3+ and Pi than that of Tb3+ and –COOH on Tb@CDs, thus realizing successful ratiometric detection of Pi. The linear concentration range was 0–16 μM, with the limit of detection (LOD) of 0.32 μM. The proposed method provided new ideas for designing nanohybrid of CDs and nanoclusters (MNCs) as ratiometric fluorescent probes for analytical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files.

References

  1. Jia X, Li J, Wang E (2013) Cu nanoclusters with aggregation induced emission enhancement. Small 9(22):3873–3879. https://doi.org/10.1002/smll.201300896

    Article  CAS  PubMed  Google Scholar 

  2. Wu Z, Liu J, Gao Y et al (2015) Assembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic property. J Am Chem Soc 137(40):12906–12913. https://doi.org/10.1021/jacs.5b06550

    Article  CAS  PubMed  Google Scholar 

  3. Ye M, Yu Y, Lin B et al (2019) Copper nanoclusters reversible switches based on ions-triggered for detection of inorganic pyrophosphatase activity. Sensors Actuators B Chem 284:36–44. https://doi.org/10.1016/j.snb.2018.12.092

    Article  CAS  Google Scholar 

  4. Yin Z, Wang Z, Dai X et al (2020) Highly luminescent AuAg nanoclusters with aggregation-induced emission for high-performance white LED application. ACS Sustain Chem Eng 8(40):15336–15343. https://doi.org/10.1021/acssuschemeng.0c05722

    Article  CAS  Google Scholar 

  5. Bai H, Tu Z, Liu Y et al (2020) Dual-emission carbon dots-stabilized copper nanoclusters for ratiometric and visual detection of Cr2O72− ions and Cd2+ ions. J Hazard Mater 386:121654. https://doi.org/10.1016/j.jhazmat.2019.121654

    Article  CAS  PubMed  Google Scholar 

  6. Huang Y, Huang J, Wang Y et al (2020) Progressive aggregation-induced emission strategy for imaging of aluminum ions in cellular microenvironment. Talanta 211:120699. https://doi.org/10.1016/j.talanta.2019.120699

    Article  CAS  PubMed  Google Scholar 

  7. Bera D, Goswami N (2021) Driving forces and routes for aggregation-induced emission-based highly luminescent metal nanocluster assembly. J Phys Chem Lett 12(37):9033–9046. https://doi.org/10.1021/acs.jpclett.1c02406

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Zhang X, Cao H et al (2021) Tb3+ tuning AIE self-assembly of copper nanoclusters for sensitively sensing trace fluoride ions. Sensors Actuators B Chem 342:130071. https://doi.org/10.1016/j.snb.2021.130071

    Article  CAS  Google Scholar 

  9. Huang Y, Liu W, Feng H et al (2016) Luminescent nanoswitch based on organic-phase copper nanoclusters for sensitive detection of trace amount of water in organic solvents. Anal Chem 88(14):7429–7434. https://doi.org/10.1021/acs.analchem.6b02149

    Article  CAS  PubMed  Google Scholar 

  10. Ru Y, Waterhouse GIN, Lu S (2022) Aggregation in carbon dots. Aggregate 3:296. https://doi.org/10.1002/agt2.296

    Article  CAS  Google Scholar 

  11. Wang B, Cai H, Waterhouse GIN et al (2022) Carbon dots in bioimaging, biosensing and therapeutics: a comprehensive review. Small Sci 2(6):2200012

    Article  CAS  Google Scholar 

  12. Ru Y, Ai L, Jia T et al (2020) Recent advances in chiral carbonized polymer dots: from synthesis and properties to applications. Nano Today 34:100953. https://doi.org/10.1016/j.nantod.2020.100953

    Article  CAS  Google Scholar 

  13. Chen B, Liu M, Zhan L et al (2018) Terbium(III) modified fluorescent carbon dots for highly selective and sensitive ratiometry of stringent. Anal Chem 90(6):4003–4009. https://doi.org/10.1021/acs.analchem.7b05149

    Article  CAS  PubMed  Google Scholar 

  14. Lin L, Luo Y, Tsai P et al (2018) Metal ions doped carbon quantum dots: synthesis, physicochemical properties, and their applications. Trends Anal Chem 103:87–101. https://doi.org/10.1016/j.trac.2018.03.015

    Article  CAS  Google Scholar 

  15. Liu L, Zhang C, Yu Y et al (2018) Determination of DNA based on fluorescence quenching of terbium doped carbon dots. Microchimica Acta 185(11):514. https://doi.org/10.1007/s00604-018-3053-6

    Article  CAS  PubMed  Google Scholar 

  16. Tian X, Fan Z (2022) Comparison between terbium-doped carbon dots and terbium-functionalized carbon dots: characterization, optical properties, and applications in anthrax biomarker detection. J Lumin 244:118732. https://doi.org/10.1016/j.jlumin.2022.118732

    Article  CAS  Google Scholar 

  17. Shen J, Fan Z (2023) Ce3+-induced fluorescence amplification of copper nanoclusters based on aggregation-induced emission for specific sensing 2,6-pyridine dicarboxylic acid. J Fluoresc 33(1):135–144. https://doi.org/10.1007/s10895-022-03044-8

    Article  CAS  PubMed  Google Scholar 

  18. Gao H, Zhang P, Guan T et al (2021) Rapid and accurate detection of phosphate in complex biological fluids based on highly improved antenna sensitization of lanthanide luminescence. Talanta 231:122243. https://doi.org/10.1016/j.talanta.2021.122243

    Article  CAS  PubMed  Google Scholar 

  19. Han L, Liu S, Yang Y et al (2020) A lanthanide coordination polymer as a ratiometric fluorescent probe for rapid and visual sensing of phosphate based on the target-triggered competitive effect. J Mater Chem C 8:13063–13071. https://doi.org/10.1039/d0tc02436h

    Article  CAS  Google Scholar 

  20. Spivakov BY, Maryutina TA, Muntau H (1999) Phosphorus speciation in water and sediments. Pure Appl Chem 71:2161–2176. https://doi.org/10.1351/pac199971112161

    Article  CAS  Google Scholar 

  21. Sarwar M, Leichner J, Naja GM et al (2019) Smart-phone, paper-based fluorescent sensor for ultra-low inorganic phosphate detection in environmental samples. Microsystems and nanoengineering 5:56. https://doi.org/10.1038/s41378-019-0096-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Warwick C, Guerreiro A, Soares A (2013) Sensing and analysis of soluble phosphates in environmental samples: a review. Biosens Bioelectron 41:1–11. https://doi.org/10.1016/j.bios.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  23. Wu Z, Yang H, Pan S et al (2020) Fluorescence-scattering dual-signal response of carbon dots@ZIF-90 for phosphate ratiometric detection. ACS sensors 5(7):2211–2220. https://doi.org/10.1021/acssensors.0c00853

    Article  CAS  PubMed  Google Scholar 

  24. Zhao H, Liu L, Liu Z et al (2011) Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem Commun 47(9):2604–2606. https://doi.org/10.1039/c0cc04399k

    Article  CAS  Google Scholar 

  25. Vervloet MG, Sezer S, Massy ZA et al (2017) The role of phosphate in kidney disease. Nat Rev Nephrol 13(1):27–38. https://doi.org/10.1038/nrneph.2016.164

    Article  CAS  PubMed  Google Scholar 

  26. Han M, Kim DH (2002) Naked-eye detection of phosphate ions in water at physiological pH: a remarkably selective and easy-to-assemble colorimetric phosphate-sensing probe. Angewandte Chemie Int Ed 41(20):3809–3811

    Article  CAS  Google Scholar 

  27. Samy R, Faustino PJ, Adams W et al (2010) Development and validation of an ion chromatography method for the determination of phosphate-binding of lanthanum carbonate. J Pharm Biomed Anal 51(5):1108–1112. https://doi.org/10.1016/j.jpba.2009.11.017

    Article  CAS  PubMed  Google Scholar 

  28. Chai S, He J, Zhan L et al (2019) Dy(III)-induced aggregation emission quenching effect of single-layered graphene quantum dots for selective detection of phosphate in the artificial wetlands. Talanta 196:100–108. https://doi.org/10.1016/j.talanta.2018.12.032

    Article  CAS  PubMed  Google Scholar 

  29. Huang Y, Feng H, Liu W et al (2017) Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for beta-galactosidase activity monitoring. J Mater Chem B 5(26):5120–5127. https://doi.org/10.1039/c7tb00901a

    Article  CAS  PubMed  Google Scholar 

  30. Sahu DK, Singha D, Sahu K (2019) Sensing of iron(III)-biomolecules by surfactant-free fluorescent copper nanoclusters. Sens Bio-sensing Res 22:100250. https://doi.org/10.1016/j.sbsr.2018.100250

    Article  Google Scholar 

  31. Zhang Q, Mei H, Zhou W et al (2021) Cerium ion(III)-triggered aggregation-induced emission of copper nanoclusters for trace-level p-nitrophenol detection in water. Microchem J 162:105842. https://doi.org/10.1016/j.microc.2020.105842

    Article  CAS  Google Scholar 

  32. Lu W, Qin X, Liu S et al (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84(12):5351–5357. https://doi.org/10.1021/ac3007939

    Article  CAS  PubMed  Google Scholar 

  33. Zhang R, Chen W (2014) Nitrogen-doped carbon quantum dots: facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron 55:83–90. https://doi.org/10.1016/j.bios.2013.11.074

    Article  CAS  PubMed  Google Scholar 

  34. Wang S, Liu S, Zhang J et al (2019) Highly fluorescent nitrogen-doped carbon dots for the determination and the differentiation of the rare earth element ions. Talanta 198:501–509. https://doi.org/10.1016/j.talanta.2019.01.113

    Article  CAS  PubMed  Google Scholar 

  35. Jiang K, Zhang L, Lu J et al (2016) Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting. Angew Chem 55(25):7231–7235

    Article  CAS  Google Scholar 

  36. Hu X, Wang W, Huang Y (2016) Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+ in water and food stuff. Talanta 154:409–415. https://doi.org/10.1016/j.talanta.2016.03.095

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Zhao D, Zhang C et al (2018) An effective signal amplifying strategy for copper (II) sensing by using in situ fluorescent proteins as energy donor of FRET. Sensors Actuators B Chem 259:633–641. https://doi.org/10.1016/j.snb.2017.12.118

    Article  CAS  Google Scholar 

  38. Xie H, Bei F, Hou J et al (2018) A highly sensitive dual-signaling assay via inner filter effect between g-C3N4 and gold nanoparticles for organophosphorus pesticides. Sensors Actuators B Chem 255:2232–2239. https://doi.org/10.1016/j.snb.2017.09.024

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection and analysis were performed by Jingxiang Shen; the first draft of the manuscript was written by Jingxiang Shen; review, supervision, and editing were performed by Zhefeng Fan. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhefeng Fan.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1.14 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Fan, Z. Construction of nanohybrid Tb@CDs/GSH-CuNCs as a ratiometric probe to detect phosphate anion based on aggregation-induced emission and FRET mechanism. Microchim Acta 190, 427 (2023). https://doi.org/10.1007/s00604-023-06005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06005-5

Keywords

Navigation