Skip to main content
Log in

An electrochemical biosensor for T4 polynucleotide kinase activity identification according to host–guest recognition among phosphate pillar[5]arene@palladium nanoparticles@reduced graphene oxide nanocomposite and toluidine blue

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

T4 polynucleotide kinase (T4 PNK) helps with DNA recombination and repair. In this work, a phosphate pillar[5]arene@palladium nanoparticles@reduced graphene oxide nanocomposite (PP5@PdNPs@rGO)–based electrochemical biosensor was created to identify T4 PNK activities. The PP5 used to complex toluidine blue (TB) guest molecules is water-soluble. With T4 PNK and ATP, the substrate DNA, which included a 5ʹ-hydroxyl group, initially self-assembled over the gold electrode surface by chemical adsorption of the thiol units. Strong phosphate-Zr4+-phosphate chemistry allowed Zr4+ to act as a bridge between phosphorylated DNA and PP5@PdNPs@rGO. Through a supramolecular host–guest recognition connection, TB molecules were able to penetrate the PP5 cavity, where they produced a stronger electrochemical response. With a 5 × 10−7 U mL−1 detection limit, the electrochemical signal is linear in the 10−6 to 1 U mL−1 T4 PNK concentration range. It was also effective in measuring HeLa cell lysate–related PNK activities and screening PNK inhibitors. Nucleotide kinase–target drug development, clinical diagnostics, and screening for inhibitors all stand to benefit greatly from the suggested technology, which offers a unique sensing mechanism for kinase activity measurement.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Wang LK, Lima CD, Shuman S (2002) Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme. EMBO J 21(14):3873–3880. https://doi.org/10.1093/emboj/cdf397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bernstein NK, Williams RS, Rakovszky ML, Cui D, Green R, Karimi-Busheri F, Mani RS, Galicia S, Koch CA, Cass CE, Durocher D, Weinfeld M, Glover JNM (2005) The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Mol Cell 17(5):657–670. https://doi.org/10.1016/j.molcel.2005.02.012

    Article  CAS  PubMed  Google Scholar 

  3. Tahbaz N, Subedi S, Weinfeld M (2012) Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair. Nucleic Acids Res 40(8):3484–3495. https://doi.org/10.1093/nar/gkr1245

    Article  CAS  PubMed  Google Scholar 

  4. Sallmyr A, Rashid I, Bhandari SK, Naila T, Tomkinson AE (2020) Human DNA ligases in replication and repair. DNA Repair 93:102908. https://doi.org/10.1016/j.dnarep.2020.102908

    Article  CAS  PubMed Central  Google Scholar 

  5. Dumitrache LC, McKinnon PJ (2017) Polynucleotide kinase-phosphatase (PNKP) mutations and neurologic disease. Mech Ageing Dev 161:121–129. https://doi.org/10.1016/j.mad.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  6. Chatterjee A, Saha S, Chakraborty A, Silva-Fernandes A, Mandal SM, Neves-Carvalho A, Liu Y, Pandita RK, Hegde ML, Hegde PM, Boldogh I, Ashizawa T, Koeppen AH, Pandita TK, Maciel P, Sarkar PS, Hazra TK (2015) The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3’-phosphatase in spinocerebellar Ataxia type 3 pathogenesis. PLOS Genet 11(1):e1004749. https://doi.org/10.1371/journal.pgen.1004749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yannone SM, Roy S, Chan DW, Murphy MB, Huang S, Campisi J, Chen DJ (2001) Werner syndrome protein is regulated and phosphorylated by DNA-dependent protein kinase. J Biol Chem 276(41):38242–38248. https://doi.org/10.1074/jbc.m101913200

    Article  CAS  PubMed  Google Scholar 

  8. Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, Bodell A, Barry B, Gleason D, Allen K, Ganesh VS, Chang BS, Grix A, Hill RS, Topcu M, Caldecott KW, Barkovich AJ, Walsh CA (2010) Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet 42:245–249. https://doi.org/10.1038/ng.526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalasova I, Hailstone R, Bublitz J, Bogantes J, Hofmann W, Leal A, Hanzlikova H, Caldecott KW (2020) Pathological mutations in PNKP trigger defects in DNA single-strand break repair but not DNA double-strand break repair. Nucleic Acids Res 48(12):6672–6684. https://doi.org/10.1093/nar/gkaa489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Freschauf GK, Karimi-Busheri F, Ulaczyk-Lesanko A, Mereniuk TR, Ahrens A, Koshy JM, Rasouli-Nia A, Pasarj P, Holmes CF, Rininsland F, Hall DG, Weinfeld M (2009) Identification of a small molecule inhibitor of the human DNA repair enzyme polynucleotide kinase/phosphatase. Cancer Res 69(19):7739–7746. https://doi.org/10.1158/0008-5472.can-09-1805

    Article  CAS  PubMed  Google Scholar 

  11. Mereniuk TR, Maranchuk RA, Schindler A, Penner-Chea J, Freschauf GK, Hegazy S, Lai R, Foley E, Weinfeld M (2012) Genetic screening for synthetic lethal partners of polynucleotide kinase/phosphatase: potential for targeting SHP-1-Depleted cancers. Cancer Res 72(22):5934–5944. https://doi.org/10.1158/0008-5472.can-12-0939

    Article  CAS  PubMed  Google Scholar 

  12. Mereniuk TR, El Gendy MAM, Mendes-Pereira AM, Lord CJ, Ghosh S, Foley E, Ashworth A, Weinfeld M (2013) Synthetic lethal targeting of PTEN-deficient cancer cells using selective disruption of polynucleotide kinase/phosphatase. Mol Cancer Ther 12(10):2135–2144. https://doi.org/10.1158/1535-7163.mct-12-1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rasouli-Nia A, Karimi-Busheri F, Weinfeld M (2004) Stable down-regulation of human polynucleotide kinase enhances spontaneous mutation frequency and sensitizes cells to genotoxic agents. Proc Nat Acad Sci USA 101(18):6905–6910. https://doi.org/10.1073/pnas.0400099101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karimi-Busheri F, Rasouli-Nia A, Allalunis-Turner J, Weinfeld M (2007) Human polynucleotide kinase participates in repair of DNA double-strand breaks by nonhomologous end joining but not homologous recombination. Cancer Res 67(14):6619–6625. https://doi.org/10.1158/0008-5472.can-07-0480

    Article  CAS  PubMed  Google Scholar 

  15. Phillips DH, Arlt VM (2007) The 32P-postlabeling assay for DNA adducts. Nat Protoc 2:2772–2781. https://doi.org/10.1038/nprot.2007.394

    Article  CAS  PubMed  Google Scholar 

  16. Wang LK, Shuman S (2001) Domain structure and mutational analysis of T4 polynucleotide kinase. J Biol Chem 276(29):26868–26874. https://doi.org/10.1074/jbc.m103663200

    Article  CAS  PubMed  Google Scholar 

  17. Chappell C, Hanakahi LA, Karimi-Busheri F, Weinfeld M, West SC (2002) Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. EMBO J 21:2827–2832. https://doi.org/10.1093/emboj/21.11.2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whitehouse CJ, Taylor RM, Thistlethwaite A, Zhang H, Karimi-Busheri F, Lasko DD, Weinfeld M, Caldecott KW (2001) XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 104(1):107–117. https://doi.org/10.1016/s0092-8674(01)00195-7

    Article  CAS  PubMed  Google Scholar 

  19. Liu HS, Ma CB, Wang J, Chen HC, Wang KM (2017) Label-free colorimetric assay for T4 polynucleotide kinase/phosphatase activity and its inhibitors based on G-quadruplex/hemin DNAzyme. Anal Biochem 517:18–21. https://doi.org/10.1016/j.ab.2016.10.022

    Article  CAS  PubMed  Google Scholar 

  20. Lin L, Shi DM, Li QF, Wang GF, Zhang XJ (2016) Detection of T4 polynucleotide kinase based on a MnO2 nanosheet-3,3’,5,5’-tetramethylbenzidine (TMB) colorimetric system. Anal Methods 8:4119–4126. https://doi.org/10.1039/c6ay00269b

    Article  CAS  Google Scholar 

  21. Zhu J, Chen LT (2022) Highly efficient incorporation of dATP in terminal transferase polymerization forming the ploy (A)n-DITO-1 fluorescent probe sensing terminal transferase and T4 polynucleotide kinase activity. Anal Chim Acta 1221:340080. https://doi.org/10.1016/j.aca.2022.340080

    Article  CAS  PubMed  Google Scholar 

  22. Zhang YQ, Cai QQ, Yan XS, Jie GF (2023) Versatile fluorescence detection of T4 PNK and mRNA based on unique DNA nanomachine amplification. Anal Chim Acta 1251:341003. https://doi.org/10.1016/j.aca.2023.341003

    Article  CAS  PubMed  Google Scholar 

  23. Xie ZW, Wang XY, Chen SY, Zhao ZX, Zhao SH, Zhang WX, Luo LJ, Yi G (2022) Construction of a simple, localized and homogeneous fluorescence detection platform for T4 PNK activity based on tetrahedral DNA nanostructure-mediated primer exchange reaction. Microchem J 183:107989. https://doi.org/10.1016/j.microc.2022.107989

    Article  CAS  Google Scholar 

  24. Qin YQ, Ke WK, Zhou YN, Zhu DD, Li YJ, Hu YG (2023) TtAgo sensor for the sensitive and rapid detection of T4 polynucleotide kinase activity. Sens Actuators B Chem 386:133753. https://doi.org/10.1016/j.snb.2023.133753

    Article  CAS  Google Scholar 

  25. Chai YY, Cheng X, Xu GH, Wei FD, Bao J, Mei J, Ren DD, Hu Q, Cen Y (2020) A nanoplatform based on metal–organic frameworks and coupled exonuclease reaction for the fluorimetric determination of T4 polynucleotide kinase activity and inhibition. Microchim Acta 187:243. https://doi.org/10.1007/s00604-020-4194-y

    Article  CAS  Google Scholar 

  26. Cao Y, Zhou Y, Lin YH, Zhu JJ (2021) Hierarchical metal−organic framework-confined CsPbBr 3 quantum dots and aminated carbon dots: a new self-sustaining suprastructure for electrochemiluminescence bioanalysis. Anal Chem 93:1818–1825. https://doi.org/10.1021/acs.analchem.0c04717

    Article  CAS  PubMed  Google Scholar 

  27. Zhang GY, Chai HN, Tian MW, Zhu SF, Qu LJ, Zhang XJ (2020) Zirconium−metalloporphyrin frameworks−luminol competitive electrochemiluminescence for ratiometric detection of polynucleotide kinase activity. Anal Chem 92:7354–7362. https://doi.org/10.1021/acs.analchem.0c01262

    Article  CAS  PubMed  Google Scholar 

  28. Yang JH, He GH, Wu WY, Deng WF, Tan YM, Xie QJ (2022) Sensitive photoelectrochemical determination of T4 polynucleotide kinase using AuNPs/SnS2/ZnIn2S4 photoactive material and enzymatic reaction-induced DNA structure switch strategy. Talanta 249:123660. https://doi.org/10.1016/j.talanta.2022.123660

    Article  CAS  PubMed  Google Scholar 

  29. Li PP, Cao Y, Mao CJ, Jin BK, Zhu JJ (2019) TiO2/g-C3N4/CdS nanocomposite-based photoelectrochemical biosensor for ultrasensitive evaluation of T4 polynucleotide kinase activity. Anal Chem 91:1563–1570. https://doi.org/10.1021/acs.analchem.8b04823

    Article  CAS  PubMed  Google Scholar 

  30. Tao JP, Liu ZQ, Zhu ZY, Zhang YL, Wang HB, Pang PF, Yang C, Yang WR (2022) Electrochemical detection of T4 polynucleotide kinase activity based on magnetic Fe3O4@TiO2 nanoparticles triggered by a rolling circle amplification strategy. Talanta 241:123272. https://doi.org/10.1016/j.talanta.2022.123272

    Article  CAS  PubMed  Google Scholar 

  31. Yan ZY, Shen XY, Zhou BL, Pan RY, Zhang B, Zhao CZ, Ren LH, Ming JJ (2021) Precise analysis of T4 polynucleotide kinase and inhibition by coupling personal glucose meter with split DNAzyme and ligation-triggered DNA walker. Sens Actuators B Chem 326:128831. https://doi.org/10.1016/j.snb.2020.128831

    Article  CAS  Google Scholar 

  32. Mao JX, Chen X, Xu HH, Xu XQ (2020) DNAzyme-driven DNA walker biosensor for amplified electrochemical detection of T4 polynucleotide kinase activity and inhibition. J Electroanal Chem 874:114470. https://doi.org/10.1016/j.jelechem.2020.114470

    Article  CAS  Google Scholar 

  33. Yan ZY, Deng PY, Liu Y (2019) Recent advances in protein kinase activity analysis based on nanomaterials. Int J Mol Sci 20(6):1440. https://doi.org/10.3390/ijms20061440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song Z, Li Y, Teng H, Ding CF, Xu GY, Luo XL (2020) Designed zwitterionic peptide combined with sacrificial Fe-MOF for low fouling and highly sensitive electrochemical detection of T4 polynucleotide kinase. Sens Actuators B Chem 305:127329. https://doi.org/10.1016/j.snb.2019.127329

    Article  CAS  Google Scholar 

  35. Li JL, Ma JH, Zhang YC, Zhang ZL, He GW (2019) A fluorometric method for determination of the activity of T4 polynucleotide kinase by using a DNA-templated silver nanocluster probe. Microchim Acta 186:48. https://doi.org/10.1007/s00604-018-3157-z

    Article  CAS  Google Scholar 

  36. Zhang YL, Fang X, Zhu ZY, Lai YQ, Xu CL, Pang PF, Wang HB, Yang C, Barrow CJ, Yang WR (2018) A sensitive electrochemical assay for T4 polynucleotide kinase activity based on titanium dioxide nanotubes and a rolling circle amplification strategy. RSC Adv 8(67):38436–38444. https://doi.org/10.1039/c8ra07745b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song WL, Yin WS, Zhang ZH, He P, Yang XY, Zhang XR (2019) A DNA functionalized porphyrinic metal-organic framework as a peroxidase mimicking catalyst for amperometric determination of the activity of T4 polynucleotide kinase. Microchim Acta 186:149. https://doi.org/10.1007/s00604-019-3269-0

    Article  CAS  Google Scholar 

  38. Lin MH, Wan H, Zhang J, Wang Q, Hu XY, Xia F (2020) Electrochemical DNA sensors based on MoS2-AuNPs for polynucleotide kinase activity and inhibition assay. ACS Appl Mater Interfaces 12:45814–45821. https://doi.org/10.1021/acsami.0c13385

    Article  CAS  PubMed  Google Scholar 

  39. Zhou YL, Yin HS, Zhao WW, Ai SY (2020) Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: a comprehensive review. Coordin Chem Rev 424:213519. https://doi.org/10.1016/j.ccr.2020.213519

    Article  CAS  Google Scholar 

  40. Ma XH, Hao YQ, Dong XX, Xia N (2023) Biosensors with metal ion–phosphate chelation interaction for molecular recognition. Molecules 28(11):4394. https://doi.org/10.3390/molecules28114394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liao Y, Zhang YQ, Su AW, Zhang YL, Wang HB, Yang WR, Pang PF (2023) Zr4+-mediated DNAzyme-driven DNA walker amplification strategy for electrochemical assay of protein kinase a activity and inhibition. Talanta 260:124612. https://doi.org/10.1016/j.talanta.2023.124612

    Article  CAS  PubMed  Google Scholar 

  42. Hu Q, Kong JM, Han DX, Bao Y, Zhang XJ, Zhang YW, Niu L (2020) Ultrasensitive peptide-based electrochemical detection of protein kinase activity amplified by RAFT polymerization. Talanta 206:120173. https://doi.org/10.1016/j.talanta.2019.120173

    Article  CAS  PubMed  Google Scholar 

  43. Ohtani S, Kato K, Fa S, Ogoshi T (2022) Host–guest chemistry based on solid-state pillar[n]arenes. Coord Chem Rev 462:214503. https://doi.org/10.1016/j.ccr.2022.214503

    Article  CAS  Google Scholar 

  44. Sathiyajith C, Shaikh RR, Han Q, Zhang Y, Meguellati K, Yang YW (2017) Biological and related applications of pillar[n]arenes. Chem Commun 53:677–696. https://doi.org/10.1039/c6cc08967d

    Article  CAS  Google Scholar 

  45. Yang K, Pei YX, Wen J, Pei ZC (2016) Recent advances in pillar[n]arenes: synthesis and applications based on host-guest interactions. Chem Commun 52:9316–9326. https://doi.org/10.1039/c6cc03641d

    Article  CAS  Google Scholar 

  46. Shamagsumova RV, Shurpik DN, Kuzin YI, Stoikov II, Rogov AM, Evtugyn GA (2022) Pillar[6]arene: electrochemistry and application in electrochemical (bio)sensors. J Electroanal Chem 913:116281. https://doi.org/10.1016/j.jelechem.2022.116281

    Article  CAS  Google Scholar 

  47. Cao S, Zhou L, Liu C, Zhang HC, Zhao YX, Zhao YL (2021) Pillararene-based self-assemblies for electrochemical biosensors. Biosens Bioelectron 181:113164. https://doi.org/10.1016/j.bios.2021.113164

    Article  CAS  PubMed  Google Scholar 

  48. Evtyugin GA, Shurpik DN, Stoikov II (2020) Electrochemical sensors and biosensors on the pillar[5]arene platform. Russ Chem Bull Int Ed 69:859–874. https://doi.org/10.1007/s11172-020-2843-2

    Article  CAS  Google Scholar 

  49. Wang J, Zhou L, Bei JL, Zhao QY, Li X, He JQ, Cai Y, Chen TT, Du YK, Yao Y (2022) An enhanced photo-electrochemical sensor constructed from pillar [5]arene functionalized Au NPs for ultrasensitive detection of caffeic acid. Talanta 243:123322. https://doi.org/10.1016/j.talanta.2022.123322

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Bei JL, Guo X, Ding Y, Chen TT, Lu B, Wang Y, Du YK, Yao Y (2022) Ultrasensitive photoelectrochemical immunosensor for carcinoembryonic antigen detection based on pillar[5]arene-functionalized Au nanoparticles and hollow PANI hybrid BiOBr heterojunction. Biosens Bioelectron 208:114220. https://doi.org/10.1016/j.bios.2022.114220

    Article  CAS  PubMed  Google Scholar 

  51. Liang H, Zhao YT, Ye HZ, Li CP (2019) Ultrasensitive and ultrawide range electrochemical determination of bisphenol A based on PtPd bimetallic nanoparticles and cationic pillar[5]arene decorated graphene. J Electroanal Chem 855:113487. https://doi.org/10.1016/j.jelechem.2019.113487

    Article  CAS  Google Scholar 

  52. Tan XP, He SH, Liu X, Zhao GF, Huang T, Yang L (2019) Ultrasensitive electrochemical sensing of dopamine by using dihydroxylatopillar[5]arene-modified gold nanoparticles and anionic pillar[5]arene-functionalized graphitic carbon nitride. Microchim Acta 186:703. https://doi.org/10.1007/s00604-019-3869-8

    Article  CAS  Google Scholar 

  53. Hu X, Liu X, Zhang W, Qin S, Yao C, Li Y, Cao D, Peng L, Wang L (2016) Controllable construction of biocompatible supramolecular micelles and vesicles by water-soluble phosphate pillar[5,6]arenes for selective anti-cancer drug delivery. Chem Mater 28:3778–3788. https://doi.org/10.1021/acs.chemmater.6b00691

    Article  CAS  Google Scholar 

  54. Luo D, Liu ZQ, Su AW, Zhang YL, Wang HB, Yang LJ, Yang WR, Pang PF (2024) An electrochemical biosensor for detection of T4 polynucleotide kinase activity based on host-guest recognition between phosphate pillar[5]arene and methylene blue. Talanta 266:124956. https://doi.org/10.1016/j.talanta.2023.124956

    Article  CAS  PubMed  Google Scholar 

  55. Qian XC, Tan S, Li Z, Qu Q, Li L, Yang L (2020) A robust host-guest interaction controlled probe immobilization strategy for the ultrasensitive detection of HBV DNA using hollow HP5-Au/CoS nanobox as biosensing platform. Biosens Bioelectron 153:112051. https://doi.org/10.1016/j.bios.2020.112051

    Article  CAS  PubMed  Google Scholar 

  56. Yang L, Zhao H, Li YC, Ran X, Deng GG, Zhang YQ, Ye HZ, Zhao GF, Li CP (2016) Indicator displacement assay for cholesterol electrochemical sensing using a calix[6]arene functionalized graphene-modified electrode. Analyst 141:270–278. https://doi.org/10.1039/c5an01843a

    Article  CAS  PubMed  Google Scholar 

  57. Zhao H, Yan Y, Chen MJ, Hu TT, Wu KF, Liu HS, Ma CB (2019) Exonuclease III-assisted signal amplification strategy for sensitive fluorescence detection of polynucleotide kinase based on poly(thymine)-templated copper nanoparticles. Analyst 144:6689–6697. https://doi.org/10.1039/c9an01659g

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21665027, 21565031), Applied Basic Research Project of Yunnan Provincial Science and Technology Department (No. 202001AT070012), Graduate Scientific Research Foundation of Yunnan Minzu University (Nos. 2023SKY028, 2023SKY027), and YMU-DEAKIN International Associated Laboratory on Functional Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Yi, J., Su, A. et al. An electrochemical biosensor for T4 polynucleotide kinase activity identification according to host–guest recognition among phosphate pillar[5]arene@palladium nanoparticles@reduced graphene oxide nanocomposite and toluidine blue. Microchim Acta 190, 394 (2023). https://doi.org/10.1007/s00604-023-05983-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05983-w

Keywords

Navigation