Skip to main content
Log in

Electrochemical detection of the oxidative damage of a potential pyrimido[5,4-g]pteridine-derived antitumor agent toward DNA

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we design and synthesize 2,2′-(7,9-dimethyl-2,4,6,8-tetraoxo-6,7,8,9-tetrahydropyrimido[5,4-g]pteridine-1,3(2H,4H)-diyl)bis(N,N-bis(2-chloroethyl)acetamide) (PT-MCA) as a novel DNA intercalator and potential antitumor agent. Electrochemical analysis reveals the redox process of PT-MCA on the electrode surface. The bioelectrochemical sensors are obtained by modifying the surface of GCE with calf thymus DNA (ctDNA), poly (dG), poly (dA), and G-quadruplex, respectively. The DNA oxidative damage induced by PT-MCA is investigated by comparing the peak intensity change of dGuo and dAdo and monitoring the peaks of the oxidation products of guanine and/or adenine (8-oxoGua and/or 2,8-oxoAde). UV–vis absorption and fluorescence spectra and gel electrophoresis are further employed to understand the intercalation of PT-MCA into DNA base pairs. Moreover, PT-MCA is proved to exhibit stronger anti-proliferation activity than mitoxantrone against both 4T1 and B16-F10 cancer cells. At last, the oxidative damage of PT-MCA toward ctDNA is not interfered by the coexistence of ions and also can be detected in real serums.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, Esener S, Fitzgerald RC, Gambhir SS, Kuhn P, Rebbeck TR, Balasubramanian S. Early detection of cancer. Science. 2022;375:6586.

    Article  Google Scholar 

  2. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Therapeut. 2009;121:29–40.

    Article  CAS  Google Scholar 

  3. Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, De FV, Upadhyay A, Kandimalla R, Chaudhary A, Dhanjal JK, Dewanjee S, Vallamkondu J, José M. Cancer chemotherapy and beyond: current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2022. https://doi.org/10.1016/j.gendis.2022.02.007.

    Article  Google Scholar 

  4. Varbanov HP, Kuttler F, Banfi D, Turcatti G, Dyson PJ. Repositioning approved drugs for the treatment of problematic cancers using a screening approach. PLoS ONE. 2017;12: e0171052.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ivens E, Cominetti MMD, Searcey M. Junctions in DNA: underexplored targets for therapeutic intervention. Bioorg Med Chem. 2022;69: 116897.

    Article  CAS  PubMed  Google Scholar 

  6. Jafari F, Baghayi H, Lavaee P, Hadizadeh F, Soltani F, Moallemzadeh H, Mirzaei S, Aboutorabzadeh SM, Ghodsi R. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents. Eur J Med Chem. 2019;164:292–303.

    Article  CAS  PubMed  Google Scholar 

  7. Martinez R, Chacon-Garcia L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem. 2005;12:127–51.

    Article  CAS  PubMed  Google Scholar 

  8. Kadagathur M, Devi GP, Grewal P, Sigalapalli DK, Makhal PN, Banerjee UC, Bathini NB, Tangellamudi ND. Novel diindoloazepinone derivatives as DNA minor groove binding agents with selective topoisomerase I inhibition: design, synthesis, biological evaluation and docking studies. Bioorg Chem. 2020;99: 103629.

    Article  CAS  PubMed  Google Scholar 

  9. Cai XM, Gray PJ, Hoff DD. DNA minor groove binders: back in the groove. Cancer Treat Rev. 2009;35:437–50.

    Article  CAS  PubMed  Google Scholar 

  10. Szyf M. The DNA methylation machinery as a target for anticancer therapy. Pharmacol Therapeut. 1996;70:1–37.

    Article  CAS  Google Scholar 

  11. Rescifina A, Zagni C, Varrica MG, Pistara V, Corsaro A. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling. Eur J Med Chem. 2014;74:95–115.

    Article  CAS  PubMed  Google Scholar 

  12. El-Helby AG, Sakr H, Ayyad RR, Mahdy HA, Khalifa MM, Belal A, Rashed M, El-Sharkawy A, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, Eissa IH. Design, synthesis, molecular modeling, in vivo studies and anticancer activity evaluation of new phthalazine derivatives as potential DNA intercalators and topoisomerase II inhibitors. Bioorg Chem. 2020;103: 104233.

    Article  CAS  PubMed  Google Scholar 

  13. Almeida LC, Calil FA, Machado-Neto JA, Costa-Lotufo LV. DNA damaging agents and DNA repair: from carcinogenesis to cancer therapy. Cancer Genet-ny. 2021;252:6–24.

    Article  Google Scholar 

  14. Pontiki E, Hadjipavlou-Litina D, Patsilinakos A, Tran TM, Marson CM. Pteridine-2,4-diamine derivatives as radical scavengers and inhibitors of lipoxygenase that can possess anti-inflammatory properties. Future Med Chem. 2015;7:1937–51.

    Article  CAS  PubMed  Google Scholar 

  15. Palanki MSS, Dneprovskaia E, Doukas J, Fine RM, Hood J, Kang X, Lohse D, Martin M, Noronha G, Soll RM, Wrasidlo W, Yee S, Zhu H. Discovery of 3,3’-(2,4-diaminopteridine-6,7-diyl)diphenol as an isozyme-selective inhibitor of PI3K for the treatment of ischemia reperfusion injury associated with myocardial infarction. J Med Chem. 2007;50:4279–94.

    Article  CAS  PubMed  Google Scholar 

  16. Carmona-Martinez V, Ruiz-Alcaraz AJ, Vera M, Guirado A, Martinez-Esparza M, Garcia-Penarrubia P. Therapeutic potential of pteridine derivatives: a comprehensive review. Med Res Rev. 2019;39:461–516.

    Article  PubMed  Google Scholar 

  17. Li P, Zheng Y, Chen X. Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Front Pharmacol. 2017;8:460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kozminski P, Halik PK, Chesori R, Gniazdowska E. Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. Int J Mol Sci. 2020;21:3483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu W, Chan KM, Kool ET. Fluorescent nucleobases as tools for studying DNA and RNA. Nat Chem. 2017;9:1043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rizvi SAA, Shahzad Y, Saleh AM, Muhammad N. Dose issues in cancer chemotherapy. Oncology. 2020;98:520–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hendry LB, Mahesh VB, Bransome ED, Ewing DE. Small molecule intercalation with double stranded DNA: implications for normal gene regulation and for predicting the biological efficacy and genotoxicity of drugs and other chemicals. Mutat Res-Fund Mol M. 2007;623:53–71.

    Article  CAS  Google Scholar 

  22. Gilad Y, Senderowitz H. Docking studies on DNA intercalators. J Chem Inf Model. 2014;54:96–107.

    Article  CAS  PubMed  Google Scholar 

  23. Panda KC, Kumar B, Sahoo BM, Banik BK, Tiwari A. Microwave irradiated eco-friendly synthesis of pyrimidine derivatives as potential antitubercular agents. Asian J Chem. 2022;34:907–11.

    Article  CAS  Google Scholar 

  24. Jubeen F, Ijaz S, Jabeen I, Aftab U, Mehdi W, Altaf A, Alissa SA, Al-Ghulikah HA, Ezzine S, Bejaoui I, Iqbal M. Anticancer potential of novel 5-fluorouracil co-crystals against MCF7 breast and SW480 colon cancer cell lines along with docking studies. Arab J Chem. 2022;15: 104299.

    Article  CAS  Google Scholar 

  25. Singh RK, Kumar S, Prasad DN, Bhardwaj TR. Therapeutic journey of nitrogen mustard as alkylating anticancer agents: historic to future perspectives. Eur J Med Chem. 2018;151:401–33.

    Article  CAS  PubMed  Google Scholar 

  26. Wang NY, Xu Y, Xiao KJ, Zuo WQ, Zhu YX, Hu R, Wang WL, Shi YJ, Yu LT, Liu ZH. Design, synthesis, and biological evaluation of 4,5-dihydro-[1,2,4]triazolo[4,3-f]pteridine derivatives as novel dual-PLK1/BRD4 inhibitors. Eur J Med Chem. 2020;191: 112152.

    Article  PubMed  Google Scholar 

  27. Shahabadi N, Zendehcheshm S, Khademi F. Exploring the ct-DNA and plasmid DNA binding affinity of the biogenic synthesized chloroxine-conjugated silver nanoflowers: spectroscopic and gel electrophoresis methods. Process Biochem. 2022;121:360–70.

    Article  CAS  Google Scholar 

  28. Svitková V, Nemčeková K, Vyskočil V. Application of silver solid amalgam electrodes in electrochemical detection of DNA damage. Anal Bioanal Chem. 2022;414:5435–44.

    Article  PubMed  Google Scholar 

  29. Jin LH, Li PY, Li JY, Yang HR, Pan XL, Li HY, Shen BJ. Study on the interaction between cinnamic acid and DNA with spectroscopy and molecular docking technique. J Mol Liq. 2021;341: 117357.

    Article  CAS  Google Scholar 

  30. Zhou XY, Zhang Y, Pan JH, Guo W. Intercalation of herbicide propyzamide into DNA using acridine orange as a fluorescence probe. Sensor Actuat B Chem. 2015;206:630–9.

    Article  Google Scholar 

  31. Kaya HO, Cetin AE, Azimzadeh M, Topkaya SN. Pathogen detection with electrochemical biosensors: advantages, challenges and future perspectives. J Electroanal Chem. 2021;882: 114989.

    Article  CAS  Google Scholar 

  32. Song KX, Chen D, Liao ZY, Yu X, Guo FF, Yu RL, Xu MZ, Xia YM, Gao WW. Label-free electrochemical detection of genetic damage induced by the interaction of a novel potential aminoanthraquinone-derived antitumor agent with DNA modified electrode. Sensor Actuat B Chem. 2022;352: 131036.

    Article  CAS  Google Scholar 

  33. Chen D, Yu X, Qin Y, Liao ZY, Li T, Guo FF, Song KX, Yu RL, Xia YM, Gao WW. Electrochemical detection of DNA damage caused by novel potential 2-nitroimidazole naphthalimide-based hypoxia tumor-targeting agent with minimum side effects. Microchem J. 2022;178: 107435.

    Article  CAS  Google Scholar 

  34. Sun D, Thompson B, Cathers BE, Salazar M, Kerwin SM, Trent JO, Jenkins TC, Neidle S, Hurley LH. Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem. 1997;40:2113–6.

    Article  CAS  PubMed  Google Scholar 

  35. Dezhampanah H, Firouzi R, Darvishi S. Spectroscopic and molecular docking investigation of polynucleotides and DNA binding affinity to Nile blue dye. Biotech Histochem. 2019;94:290–7.

    Article  CAS  PubMed  Google Scholar 

  36. Mao YJ, Tian W, Huang ZW, An J. Convenient synthesis of toxoflavin that targets beta-catenin/Tcf4 signaling activities. J Heterocyclic Chem. 2014;51:594–7.

    Article  CAS  Google Scholar 

  37. Ye FQ, Wang YW, Nian SY, Wang Y, Chen D, Yu SF, Wang SC. Synthesis and evaluation of biological and antitumor activities of 5,7-dimethyl-oxazolo 5,4-d pyrimidine-4,6(5H,7H)-dione derivatives as novel inhibitors of FGFR1. J Enzyme Inhib Med Chem. 2015;30:961–6.

    Article  CAS  PubMed  Google Scholar 

  38. Nagamatsu T, Yamato H, Takai K, Yoneda F. A new and convenient synthesis of 10-substituted 2,4,6,8-tetraoxo-2,3,4,6,7,8,9,10-octahydropyrimido[5,4-g]pteridines as a flavin model. Synthesis. 1983;7:563.

    Article  Google Scholar 

  39. Spackova J, Svobodova E, Hartman T, Stibor I, Kopecka J, Cibulkova J, Chudoba J, Cibulka R. Visible light 2+2 photocycloaddition mediated by flavin derivative immobilized on mesoporous silica. ChemCatChem. 2017;9:1177–81.

    Article  CAS  Google Scholar 

  40. Srivastava P, Asrar RA, Knies C, Abramov M, Froeyen M, Rozenski J, Rosemeyer H, Herdewijn P. Achiral, acyclic nucleic acids: synthesis and biophysical studies of a possible prebiotic polymer. Org Biomol Chem. 2015;13:9249–60.

    Article  CAS  PubMed  Google Scholar 

  41. Sharpe MA, Han JY, Baskin AM, Baskin DS. Design and synthesis of a MAO-B-selectively activated prodrug based on MPTP: a mitochondria-targeting chemotherapeutic agent for treatment of human malignant gliomas. ChemMedChem. 2015;10:621–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bard AJ, Faulkner LR. Electrochemical methods fundamentals and applications. 2nd ed. New York: John Wiley & Sons; 2003.

    Google Scholar 

  43. McLeod J, Stadler E, Wilson R, Holmes A, O’Hare D. Electrochemical detection of cefiderocol for therapeutic drug monitoring. Electrochem Commun. 2021;133: 107147.

    Article  CAS  Google Scholar 

  44. Kara HES. Redox mechanism of anticancer drug idarubicin and in-situ evaluation of interaction with DNA using an electrochemical biosensor. Bioelectrochemistry. 2014;99:17–23.

    Article  Google Scholar 

  45. Suprun EV. Direct electrochemistry of proteins and nucleic acids: the focus on 3D structure. Electrochem Commun. 2021;125: 106983.

    Article  CAS  Google Scholar 

  46. Oliveira SCB, Oliveira-Brett AM. In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals on a boron-doped diamond electrode. Langmuir. 2012;28:4896–901.

    Article  CAS  PubMed  Google Scholar 

  47. Diculescu VC, Piedade JAP, Oliveira-Brett AM. Electrochemical behaviour of 2,8-dihydroxyadenine at a glassy carbon electrode. Bioelectrochemistry. 2007;70:141–6.

    Article  CAS  PubMed  Google Scholar 

  48. Suprun EV, Kutdusova GR, Khmeleva SA, Radko SP. Towards deeper understanding of DNA electrochemical oxidation on carbon electrodes. Electrochem Commun. 2021;124: 106947.

    Article  CAS  Google Scholar 

  49. Bilge S, Dogan-Topal B, Taskin TT, Atici EB, Sınağ A, Ozkan SA. Investigation of the interaction between anticancer drug ibrutinib and double-stranded DNA by electrochemical and molecular docking techniques. Microchem J. 2022;180: 107622.

    Article  CAS  Google Scholar 

  50. Elias B, Shao F, Barton JK. Charge migration along the DNA duplex: HOle versus electron transport. J Am Chem Soc. 2008;130:1152–3.

    Article  CAS  PubMed  Google Scholar 

  51. Arshad N, Abbas N, Perveen F, Mirza B, Almuhaini AM, Alkahtani S. Molecular docking analysis and spectroscopic investigations of zinc(II), nickel(II) N-phthaloyl-beta-alanine complexes for DNA binding: evaluation of antibacterial and antitumor activities. J Saudi Chem Soc. 2021;25: 101323.

    Article  CAS  Google Scholar 

  52. Kiranmai G, Makhal PNN, Tokala R, Shankaraiah N, Nagesh N, Tangellamudi NDD, Shaikh AS, Devi GP, Sigalapalli DK, Kaki VR, Babu BN. Exploration of mercaptoacetamide-linked pyrimidine-1,3,4-oxadiazole derivatives as DNA intercalative topo II inhibitors: cytotoxicity and apoptosis induction. Bioorg Med Chem Lett. 2022;65: 128697.

    Article  PubMed  Google Scholar 

  53. Kadagathur M, Shaikh AS, Panda B, George J, Phanindranath R, Sigalapalli DK, Bhale NA, Godugu C, Nagesh N, Shankaraiah N, Tangellamudi ND. Synthesis of indolo/pyrroloazepinone-oxindoles as potential cytotoxic, DNA-intercalating and topo I inhibitors. Bioorg Chem. 2022;122: 105706.

    Article  CAS  PubMed  Google Scholar 

  54. Hanifa B, Sirajuddin M, Kubicki M, Tiekink ERT. Three isomeric 4-(n-bromophenyl)carbamoyl butanoic acids (n=2, 3 and 4) as DNA intercalator: synthesis, physicochemical characterization, antimicrobial activity, antioxidant potential and in silico study. J Mol Struct. 2022;1262: 133033.

    Article  CAS  Google Scholar 

  55. Zhang R, Jing WQ, Chen C, Zhang SC, Abdalla M, Sun P, Wang GY, You WJ, Yang ZM, Zhang J, Tang CW, Du W, Liu Y, Li XX, Liu JT, You XN, Hu HL, Cai L, Xu FB, Dong BX, Liu ML, Qiang BM, Sun YH, Yu GC, Wu JBA, Zhao K, Jiang XY. Inhaled mRNA nanoformulation with biogenic ribosomal protein reverses established pulmonary fibrosis in a bleomycin-induced murine model. Adv Mater. 2022;34:2107506.

    Article  CAS  Google Scholar 

Download references

Funding

This work is partially supported by the National Natural Science Foundation of China (No. 21472105), the Natural Science Foundation of Shandong Province (No. ZR2020QB168), the Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council (Grant PQETGP2022002), the Beijing Science and Technology Plan Project (Grant Z211100004321003, Z211100004321004), and the Scientific Research Foundation of Qingdao University of Science and Technology (No. 010029049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Mu Xia or Wei-Wei Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2802 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, FF., Li, T., Mu, XP. et al. Electrochemical detection of the oxidative damage of a potential pyrimido[5,4-g]pteridine-derived antitumor agent toward DNA. Anal Bioanal Chem 415, 2249–2260 (2023). https://doi.org/10.1007/s00216-023-04643-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04643-5

Keywords

Navigation