Skip to main content
Log in

N,N-dicarboxymethyl Perylene-diimide-modified CdV2O6 Nanorods for Colorimetric Sensing of H2O2 and Pyrogallol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The peroxidase-like activity of CdV2O6 nanorods has been considerably improved by modification with N, N-dicarboxymethyl perylene-diimide (PDI) as a photosensitizer. The peroxidase-like behaviors are evaluated by virtue of the colorless chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB), which is fast changed into blue oxTMB in the presence of H2O2 in only 90 s. PDI-CdV2O6 exhibits high stability at elevated temperatures and PDI-CdV2O6 retains more than 70% of its catalytic activity over a wide range of 15 to 60 °C. The catalytic mechanism of PDI-CdV2O6 is ascribed to the synergistic interaction between PDI and CdV2O6 and the generation of •O2 radicals. Based on the enhanced peroxidase-like activity of PDI-CdV2O6, a selective colorimetric sensor has been constructed for H2O2 and pyrogallol (PG) with detection limits of 36.5 μM and 0.179 μM, respectively. The feasibility of the proposed sensing platform has been validated by detecting H2O2 in milk and pyrogallol in tap water.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

Data Availability

Data openly available in a public repository.

References

  1. Song C, Ding W, Zhao W, Liu H, Wang J, Yao Y, Yao C (2020) High peroxidase-like activity realized by facile synthesis of FeS2 nanoparticles for sensitive colorimetric detection of H2O2 and glutathione. Biosens Bioelectron 151:111983. https://doi.org/10.1016/j.bios.2019.111983

    Article  CAS  PubMed  Google Scholar 

  2. Li N, Liu M, Ma Y, Chang Q, Wang H, Li Y, Zhang H, Liu B, Xue C, Hu S (2021) Molybdenum Selenide/Porous Carbon Nanomaterial Heterostructures with Remarkably Enhanced Light-Boosting Peroxidase-like Activities. ACS Appl Mater Interfaces 13:54274–54283. https://doi.org/10.1021/acsami.1c16569

    Article  CAS  PubMed  Google Scholar 

  3. Li R, Zhou Y, Zou L, Li S, Wang J, Shu C, Wang C, Ge J, Ling L (2017) In situ growth of gold nanoparticles on hydrogen-bond supramolecular structures with high peroxidase-like activity at neutral pH and their application to one-pot blood glucose sensing. Sens Actuators, B Chem 245:656–664. https://doi.org/10.1016/j.snb.2017.01.141

    Article  CAS  Google Scholar 

  4. Chen M, Sun L, Ding Y, Shi Z, Liu Q (2017) N, N′-Di-carboxymethyl perylene diimide functionalized magnetic nanocomposites with enhanced peroxidase-like activity for colorimetric sensing of H2O2 and glucose. New J Chem 41:5853–5862. https://doi.org/10.1039/c7nj00292k

    Article  CAS  Google Scholar 

  5. Feng L, Zhang L, Chu S, Zhang S, Chen X, Du Z, Gong Y, Wang H (2022) Controllable doping of Fe atoms into MoS2 nanosheets towards peroxidase-like nanozyme with enhanced catalysis for colorimetric analysis of glucose. Appl Surf Sci 583:152496. https://doi.org/10.1016/j.apsusc.2022.152496

  6. Liang Y, Li H, Fan L, Li R, Cui Y, Ji X, Xiao H, Hu J, Wang L (2022) Zwitterionic daptomycin stabilized palladiumnanoparticles with enhanced peroxidase-like properties for glucose detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects 633:127797. https://doi.org/10.1016/j.colsurfa.2021.127797

  7. Wang Y, Liu X, Wang M, Wang X, Ma W, Li J (2021) Facile synthesis of CDs@ZIF-8 nanocomposites as excellentperoxidase mimics for colorimetric detection of H2O2 and glutathione. Sens Actuators B: Chemi 329:129115. https://doi.org/10.1016/j.snb.2020.129115

  8. Li J, Zhao J, Li S, Chen Y, Lv W, Zhang J, Zhang L, Zhang Z, Lu X (2021) Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res 14:4689–4695. https://doi.org/10.1007/s12274-021-3406-z

    Article  CAS  Google Scholar 

  9. Nguyen PT, Lee J, Cho A, Kim MS, Choi D, Han JW, Kim MI, Lee J (2022) Rational development of co‐doped mesoporous ceria with high peroxidase‐mimicking activity at neutral ph for paper‐based colorimetric detection of multiple biomarkers. Adv Funct Mater 32:2112428. https://doi.org/10.1002/adfm.202112428

  10. Tran HV, Nguyen ND, Tran CTQ, Tran LT, Le TD, Tran HTT, Piro B, Huynh CD, Nguyen TN, Nguyen NTT, Dang HTM, Nguyen HL, Tran LD, Phan NT (2020) Silver nanoparticles-decorated reduced graphene oxide: A novel peroxidase-like activity nanomaterial for development of a colorimetric glucose biosensor. Arab J Chem 13:6084–6091. https://doi.org/10.1016/j.arabjc.2020.05.008

    Article  CAS  Google Scholar 

  11. Wei F, Cui X, Wang Z, Dong C, Li J, Han X (2021) Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem Eng J 408:127240. https://doi.org/10.1016/j.cej.2020.127240

    Article  CAS  PubMed  Google Scholar 

  12. Zhu X, Li H, Zhang D, Chen W, Fu M, Nie S, Gao Y, Liu Q (2019) Novel “On–Off” Colorimetric Sensor for Glutathione Based on Peroxidase Activity of Montmorillonite-Loaded TiO2 Functionalized by Porphyrin Precisely Controlled by Visible Light. ACS Sustainable Chemistry & Engineering 7:18105–18113. https://doi.org/10.1021/acssuschemeng.9b05146

    Article  CAS  Google Scholar 

  13. Zhang L, Chen M, Jiang Y, Chen M, Ding Y, Liu Q (2017) A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2. Sens Actuators, B Chem 239:28–35. https://doi.org/10.1016/j.snb.2016.07.168

    Article  CAS  Google Scholar 

  14. Liu Q, Yang Y, Li H, Zhu R, Shao Q, Yang S, Xu J (2015) NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: promising peroxidase mimetics for H2O2 and glucose detection. Biosens Bioelectron 64:147–153. https://doi.org/10.1016/j.bios.2014.08.062

    Article  CAS  PubMed  Google Scholar 

  15. Lyu H, Yin D, Zhu B, Lu G, Liu Q-Y, Zhang X, Zhang X (2020) Metal-Free 2(3),9(10),16(17),23(24)-Octamethoxyphthalocyanine-Modified Uniform CoSn(OH)6 Nanocubes: Enhanced Peroxidase-like Activity, Catalytic Mechanism, and Fast Colorimetric Sensing for Cholesterol. ACS Sustainable Chemistry & Engineering 8:9404–9414. https://doi.org/10.1021/acssuschemeng.0c02151

    Article  CAS  Google Scholar 

  16. Ding K, Wang Y, Shan T, Xu J, Bao Q, Liu F, Zhong H (2020) Propeller-like acceptors with difluoride perylene diimides for organic solar cells. Organic Electronics 78:105569. https://doi.org/10.1016/j.orgel.2019.105569

  17. Wurthner F, Saha-Moller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D (2016) Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem Rev 116:962–1052. https://doi.org/10.1021/acs.chemrev.5b00188

    Article  CAS  PubMed  Google Scholar 

  18. Shah SN, Li H, Linv JM (2016) vEnhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid. Talanta 153:23–30. https://doi.org/10.1016/j.talanta.2016.02.056

    Article  CAS  PubMed  Google Scholar 

  19. Li Z, Yang Y, Zeng Y, Wang J, Liu H, Guo L, Li L (2017) Novel imidazole fluorescent poly(ionic liquid) nanoparticles for selective and sensitive determination of pyrogallol. Talanta 174:198–205. https://doi.org/10.1016/j.talanta.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  20. Vafaei A, Bin Mohamad J, Karimi E (2019) HPLC profiling of phenolics and flavonoids of Adonidia merrillii fruits and their antioxidant and cytotoxic properties. Nat Prod Res 33:2531–2535. https://doi.org/10.1080/14786419.2018.1448810

    Article  CAS  PubMed  Google Scholar 

  21. Raghu P, Madhusudana Reddy T, Reddaiah K, Jaidev LR, Narasimha G (2013) A novel electrochemical biosensor based on horseradish peroxidase immobilized on Ag-nanoparticles/poly(l-arginine) modified carbon paste electrode toward the determination of pyrogallol/hydroquinone. Enzyme Microb Technol 52:377–385. https://doi.org/10.1016/j.enzmictec.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  22. Mostafa IM, Gilani M, Chen Y, Lou B, Li J, Xu G (2021) Lucigenin-pyrogallol chemiluminescence for the multiple detection of pyrogallol, cobalt ion, and tyrosinase. J Food Drug Anal 29:510–520. https://doi.org/10.38212/2224-6614.3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gebers J, Rolland D, Marty R, Suarez S, Cervini L, Scopelliti R, Brauer JC, Frauenrathv H (2015) Solubility and crystallizability: facile access to functionalized pi-conjugated compounds with chlorendylimide protecting groups. Chemistry 21:1542–1553. https://doi.org/10.1002/chem.201403623

    Article  CAS  PubMed  Google Scholar 

  24. Li D, Bai X, Pan C, Zhu Y (2013) Investigations on the Phase Transition between CdV2O6 and Cd2V2O7 and Their Photocatalytic Performances. Eur J Inorg Chem 2013:3070–3075. https://doi.org/10.1002/ejic.201300020

    Article  CAS  Google Scholar 

  25. Jia R, Wang Y, Wang C, Ling Y, Yu Y, Zhang B (2020) Boosting Selective Nitrate Electroreduction to Ammonium by Constructing Oxygen Vacancies in TiO2. ACS Catal 10:3533–3540. https://doi.org/10.1021/acscatal.9b05260

    Article  CAS  Google Scholar 

  26. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  27. Xiang Z, Wang Y, Ju P, Zhang D (2015) Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta 183:457–463. https://doi.org/10.1007/s00604-015-1670-x

    Article  CAS  Google Scholar 

  28. Zhu Q, Yang J, Peng Z, He Z, Chen W, Tang H, Li Y (2021) Selective detection of glutathione by flower-like NiV2O6 with only peroxidase-like activity at neutral pH. Talanta. 234:122645. https://doi.org/10.1016/j.talanta.2021.122645

    Article  CAS  PubMed  Google Scholar 

  29. Su L, Feng J, Zhou X, Ren C, Li H, Chen X (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem 84:5753–5758. https://doi.org/10.1021/ac300939z

    Article  CAS  PubMed  Google Scholar 

  30. Zhang CY, Zhang H, Yang FQ (2021) Enhanced peroxidase-like activity of copper phosphate modified by hydrophilic phytic-acid and its application in colorimetric detection of hydrogen peroxide. Microchem J168:106489. https://doi.org/10.1016/j.microc.2021.106489

  31. He Y, Li N, Lian L, Yang Z, Liu Z, Liu Q, Zhang X, Zhang X (2020) Colorimetric ascorbic acid sensing from a synergetic catalytic strategy based on 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin functionalized CuS nanohexahedrons with the enhanced peroxidase-like activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 598:124855. https://doi.org/10.1016/j.colsurfa.2020.124855

  32. Achari DS, Santhosh C, Deivasegamani R, Nivetha R, Bhatnagar A, Jeong SK, Grace AN (2017) A non-enzymatic sensor for hydrogen peroxide based on the use of α-Fe2O3 nanoparticles deposited on the surface of NiO nanosheets. Microchimica Acta 184:3223–3229. https://doi.org/10.1007/s00604-017-2335-8

    Article  CAS  Google Scholar 

  33. Guan J, Peng J, Jin X (2015) Synthesis of copper sulfide nanorods as peroxidase mimics for the colorimetric detection of hydrogen peroxide. Anal Methods 7:5454–5461. https://doi.org/10.1039/c5ay00895f

    Article  CAS  Google Scholar 

  34. Rivero PJ, Ibañez E, Goicoechea J, Urrutia A, Matias IR, Arregui FJ (2017) A self-referenced optical colorimetric sensor based on silver and gold nanoparticles for quantitative determination of hydrogen peroxide. Sens Actuators, B Chem 251:624–631. https://doi.org/10.1016/j.snb.2017.05.110

    Article  CAS  Google Scholar 

  35. Cui M, Zhou J, Zhao Y, Song Q (2017) Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sens Actuators, B Chem 243:203–210. https://doi.org/10.1016/j.snb.2016.11.145

    Article  CAS  Google Scholar 

  36. Chen Z, Zhang X, Cao H, Huang Y (2013) Chitosan-capped silver nanoparticles as a highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols. Analyst 138:2343–2349. https://doi.org/10.1039/c3an36905f

    Article  CAS  PubMed  Google Scholar 

  37. Ali HRH, Hassan AI, Hassan YF, El-Wekil MM (2019) Colorimetric and fluorimetric (dual-mode) nanoprobe for the determination of pyrogallol based on the complexation with copper(II)- and nitrogen-doped carbon dots. Mikrochim Acta 186:850. https://doi.org/10.1007/s00604-019-3892-9

    Article  CAS  PubMed  Google Scholar 

  38. Nezhad MR, Alimohammadi M, Tashkhourian J, Razavian SM (2008) Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 71:199–203. https://doi.org/10.1016/j.saa.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  39. Feng P-S, Wang S-M, Su W-Y, Cheng S-H (2012) Electrochemical Oxidation and Sensitive Determination of Pyrogallol at Preanodized Screen-Printed Carbon Electrodes. J Chin Chem Soc 59:231–238. https://doi.org/10.1002/jccs.201100384

    Article  CAS  Google Scholar 

  40. Matemadombo F, Apetrei C, Nyokong T, Rodríguez-Méndez ML, de Saja JA (2012) Comparison of carbon screen-printed and disk electrodes in the detection of antioxidants using CoPc derivatives. Sens Actuators, B Chem 166–167:457–466. https://doi.org/10.1016/j.snb.2012.02.088

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21971152), Shandong Key Laboratory of Biochemical Analysis (SKLBA2207) and the Project of Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation Team [Nanozymes Biomedical Innovation Team].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wu, Xixi Zhu or Qingyun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 477 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hao, P., Wang, L. et al. N,N-dicarboxymethyl Perylene-diimide-modified CdV2O6 Nanorods for Colorimetric Sensing of H2O2 and Pyrogallol. Microchim Acta 190, 270 (2023). https://doi.org/10.1007/s00604-023-05846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05846-4

Keywords

Navigation