Skip to main content
Log in

A molecularly imprinted electrochemical sensor with dual functional monomers for selective determination of gatifloxacin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A molecularly imprinted electrochemical sensor was designed for the selective determination of gatifloxacin (GTX) based on dual functional monomers. Multi-walled carbon nanotube (MWCNT) enhanced the current intensity and zeolitic imidazolate framework 8 (ZIF8) provided a large surface area to produce more imprinted cavities. In the electropolymerization of molecularly imprinted polymer (MIP), p-aminobenzoic acid (p-ABA) and nicotinamide (NA) were used as dual functional monomers, and GTX was the template molecule. Taking [Fe(CN)6]3−/4− as an electrochemical probe, an oxidation peak on the glassy carbon electrode was located at about 0.16 V (vs. saturated calomel electrode). Due to the diverse interactions among p-ABA, NA, and GTX, the MIP-dual sensor exhibited higher specificity towards GTX than MIP-p-ABA and MIP-NA sensors. The sensor had a wide linear range from 1.00 × 10−14 to 1.00 × 10−7 M with a low detection limit of 2.61 × 10−15 M. Satisfactory recovery between 96.5 and 105% with relative standard deviation from 2.4 to 3.7% in real water samples evidenced the potential of the method in antibiotic contaminant determination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Jiang Z, Li G, Zhang M (2016) Electrochemical sensor based on electro-polymerization of β-cyclodextrin and reduced-graphene oxide on glassy carbon electrode for determination of gatifloxacin. Sens Actuators B Chem 228:59–65. https://doi.org/10.1016/j.snb.2016.01.013

    Article  CAS  Google Scholar 

  2. Chen A, Li R, Zhong Y, Deng Q, Yin X, Li H, Kong L, Yang R (2022) A novel chiral fluorescence probe based on carbon dots-copper(II) system for ratio fluorescence detection of gatifloxacin. Sens. Actuators B Chem 359:131602. https://doi.org/10.1016/j.snb.2022.131602

    Article  CAS  Google Scholar 

  3. Huang F, Chen L, Zhang C, Liu F, Li H (2022) Prioritization of antibiotic contaminants in China based on decennial national screening data and their persistence, bioaccumulation and toxicity. Sci. Total Environ 806:150636. https://doi.org/10.1016/j.scitotenv.2021.150636

    Article  CAS  PubMed  Google Scholar 

  4. Jia A, Wan Y, Xiao Y, Hu J (2012) Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water Res 46:387–394. https://doi.org/10.1016/j.watres.2011.10.055

    Article  CAS  PubMed  Google Scholar 

  5. Domingos LC, Moreira MV, Keller KM, Viana FA, Melo MM, Soto-Blanco B (2017) Simultaneous quantification of gatifloxacin, moxifloxacin, and besifloxacin concentrations in cornea and aqueous humor by LC-QTOF/MS after topical ocular dosing. J Pharmacol Toxicol Methods 83:87–93. https://doi.org/10.1016/j.vascn.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Shu B, Gao Y, Gui X, He L-F, Zhang K (2022) Multicolor fluorescence digital mapping of rare-earth ion-labeled porous silica nanoprobes for the recognition of various antibiotic residues in milk. Chin J Anal Chem 50:100181. https://doi.org/10.1016/j.cjac.2022.100181

    Article  Google Scholar 

  7. Yi J, Meng M, Liu ZQ, Zhi JF, Zhang YY, Xu J, Wang YB, Liu JT, Xi RM (2012) Development of an electrochemical immunoassay for detection of gatifloxacin in swine urine. J Zhejiang Univ Sci B 13:118–125. https://doi.org/10.1631/jzus.B1100073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zan G, Wu T, Dong W, Zhou J, Tu T, Xu R, Chen Y, Wang Y, Wu Q (2022) Two-level biomimetic designs enable intelligent stress dispersion for super-foldable C/NiS nanofiber free-standing electrode. Adv Fiber Mater 4:1177–1190. https://doi.org/10.1007/s42765-022-00162-7

    Article  CAS  Google Scholar 

  9. Huang Y, Ye D, Yang J, Lu H, Li L, Ding Y (2022) A novel dual-signal molecularly imprinted electrochemical sensor based on NiFe prussian blue analogue and SnS2 for detection of p-Hydroxyacetophenone. Chem Eng J 435:134981. https://doi.org/10.1016/j.cej.2022.134981

    Article  CAS  Google Scholar 

  10. Mohammadinejad A, Abouzari-Lotf E, Aleyaghoob G, Rezayi M, KazemiOskuee R (2022) Application of a transition metal oxide/carbon-based nanocomposite for designing a molecularly imprinted poly (l-cysteine) electrochemical sensor for curcumin. Food Chem 386:132845. https://doi.org/10.1016/j.foodchem.2022.132845

    Article  CAS  PubMed  Google Scholar 

  11. Zan G, Wu T, Zhu F, He P, Cheng Y, Chai S, Wang Y, Huang X, Zhang W, Wan Y, Peng X, Wu Q (2021) A biomimetic conductive super-foldable material. Matter 4:3232–3247. https://doi.org/10.1016/j.matt.2021.07.021

    Article  CAS  Google Scholar 

  12. Chai S, Zan G, Dong K, Wu T, Wu Q (2021) Approaching superfoldable thickness-limit carbon nanofiber membranes transformed from water-soluble PVA. Nano Lett 21:8831–8838. https://doi.org/10.1021/acs.nanolett.1c03241

    Article  CAS  PubMed  Google Scholar 

  13. Sui R, Zan G, Wen M, Li W, Liu Z, Wu Q, Fu Y (2022) Dual carbon design strategy for anodes of sodium-ion battery: mesoporous CoS2/CoO on open framework carbon-spheres with rGO encapsulating. ACS Appl Mater 14:28004–28013. https://doi.org/10.1021/acsami.2c06551

    Article  CAS  Google Scholar 

  14. Zan G, Wu T, Zhang Z, Li J, Zhou J, Zhu F, Chen H, Wen M, Yang X, Peng X, Chen J, Wu Q (2022) Bioinspired nanocomposites with self-adaptive stress dispersion for super-foldable electrodes. Adv Sci 9:e2103714. https://doi.org/10.1002/advs.202103714

    Article  CAS  Google Scholar 

  15. Huang Y, Lin J, Duan Y, Yu C, Li L, Ding Y (2022) Preparation of carbon fiber composite modified by cobalt lanthanum oxides and its electrochemical simultaneous determination of amlodipine and acetaminophen. Adv Fiber Mater 4:1153–1163. https://doi.org/10.1007/s42765-022-00159-2

    Article  CAS  Google Scholar 

  16. Li Y, Zhang L, Dang Y, Chen Z, Zhang R, Li Y, Ye BC (2019) A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin. Biosens Bioelectron 127:207–214. https://doi.org/10.1016/j.bios.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  17. Pan Y, Shang L, Zhao F, Zeng B (2015) A novel electrochemical 4-nonyl-phenol sensor based on molecularly imprinted poly (o-phenylenediamine-co-o-toluidine)−nitrogen-doped graphene nanoribbons−ionic liquid composite film. Electrochim Acta 151:423–428. https://doi.org/10.1016/j.electacta.2014.11.044

    Article  CAS  Google Scholar 

  18. Regasa MB, Soreta TR, Femi OE, Ramamurthy PC, Subbiahraj S (2020) Novel multifunctional molecular recognition elements based on molecularly imprinted poly (aniline-co-itaconic acid) composite thin film for melamine electrochemical detection. Sensing and Bio-Sensing Research 27:100318. https://doi.org/10.1016/j.sbsr.2019.100318

    Article  Google Scholar 

  19. Jin H, Ye D, Shen L, Fu R, Tang Y, Jung JC, Zhao H, Zhang J (2022) Perspective for single atom nanozymes based sensors: advanced materials, sensing mechanism, selectivity regulation, and applications. Anal Chem 94:1499–1509. https://doi.org/10.1021/acs.analchem.1c04496

    Article  CAS  PubMed  Google Scholar 

  20. Shen L, Khan MA, Wu X, Cai J, Lu T, Ning T, Liu Z, Lu W, Ye D, Zhao H, Zhang J (2022) Fe-N-C single-atom nanozymes based sensor array for dual signal selective determination of antioxidants. Biosens. Bioelectron 205:114097. https://doi.org/10.1016/j.bios.2022.114097

    Article  CAS  PubMed  Google Scholar 

  21. Han W, Wang W, Fan J, Jia R, Yang X, Wu T, Wu Q (2022) A novel Ag/ZnO core–shell structure for efficient sterilization synergizing antibiotics and subsequently removing residuals. Green Energy Environ. https://doi.org/10.1016/j.gee.2022.07.004

    Article  Google Scholar 

  22. Zhang Y, Liu Z, Wang Y, Kuang X, Ma H, Wei Q (2020) Directly assembled electrochemical sensor by combining self-supported CoN nanoarray platform grown on carbon cloth with molecularly imprinted polymers for the detection of Tylosin. J Hazard Mater 398:122778. https://doi.org/10.1016/j.jhazmat.2020.122778

    Article  CAS  PubMed  Google Scholar 

  23. Fu K, Zhang R, He J, Bai H, Zhang G (2019) Sensitive detection of ketamine with an electrochemical sensor based on UV-induced polymerized molecularly imprinted membranes at graphene and MOFs modified electrode. Biosens Bioelectron 143:111636. https://doi.org/10.1016/j.bios.2019.111636

    Article  CAS  PubMed  Google Scholar 

  24. Hatamluyi B, Rezayi M, Beheshti HR, Boroushaki MT (2020) Ultra-sensitive molecularly imprinted electrochemical sensor for patulin detection based on a novel assembling strategy using Au@Cu-MOF/N-GQDs. Sens Actuators B Chem 318:128219. https://doi.org/10.1016/j.snb.2020.128219

    Article  CAS  Google Scholar 

  25. Yang S, Yang M, Yao X, Fa H, Wang Y, Hou C (2020) A zeolitic imidazolate framework/carbon nanofiber nanocomposite based electrochemical sensor for simultaneous detection of co-existing dihydroxybenzene isomers. Sens Actuators B Chem 320:128294. https://doi.org/10.1016/j.snb.2020.128294

    Article  CAS  Google Scholar 

  26. Tong P, Meng Y, Liang J, Li J (2021) Molecularly imprinted electrochemical luminescence sensor based on core–shell magnetic particles with ZIF-8 imprinted material. Sens Actuators B Chem 330:129405. https://doi.org/10.1016/j.snb.2020.129405

    Article  CAS  Google Scholar 

  27. Ding K, Zhao C, Cao Z, Liu Z, Liu J, Zhan J, Ma C, Xi R (2009) Chemiluminescent detection of gatifloxacin residue in milk. Anal Lett 42:505–518. https://doi.org/10.1080/00032710802677100

    Article  CAS  Google Scholar 

  28. Razzaq SN, Mariam I, Khan IU, Ashfaq M (2012) Development and validation of liquid chromatographic method for gatifloxacin and ketorolac tromethamine in combined dosage form. J Liq Chromatogr R T 35:651–661. https://doi.org/10.1080/10826076.2011.606584

    Article  CAS  Google Scholar 

  29. Taherizadeh M, Jahani S, Moradalizadeh M, Foroughi MM (2023) Synthesis of a dual-functional terbium doped copper oxide nanoflowers for high-efficiently electrochemical sensing of ofloxacin, pefloxacin and gatifloxacin. Talanta 255:124216. https://doi.org/10.1016/j.talanta.2022.124216

    Article  CAS  PubMed  Google Scholar 

  30. Zhu M, Li R, Lai M, Ye H, Long N, Ye J, Wang J (2020) Copper nanoparticles incorporating a cationic surfactant-graphene modified carbon paste electrode for the simultaneous determination of gatifloxacin and pefloxacin. J Electroanal Chem 857:113730. https://doi.org/10.1016/j.jelechem.2019.113730

    Article  CAS  Google Scholar 

  31. Phonklam K, Wannapob R, Sriwimol W, Thavarungkul P, Phairatana T (2020) A novel molecularly imprinted polymer PMB/MWCNTs sensor for highly-sensitive cardiac troponin T detection. Sens Actuators B Chem 308:127630. https://doi.org/10.1016/j.snb.2019.127630

    Article  CAS  Google Scholar 

  32. Tan F, Zhai M, Meng X, Wang Y, Zhao H, Wang X (2021) Hybrid peptide-molecularly imprinted polymer interface for electrochemical detection of vancomycin in complex matrices. Biosens Bioelectron 184:113220. https://doi.org/10.1016/j.bios.2021.113220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (No. 22274096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Yaping Ding.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 545 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Sun, X., Yang, J. et al. A molecularly imprinted electrochemical sensor with dual functional monomers for selective determination of gatifloxacin. Microchim Acta 190, 261 (2023). https://doi.org/10.1007/s00604-023-05839-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05839-3

Keywords

Navigation