Skip to main content
Log in

pH-responsive dual-enzyme mimics based on hollow metal organic framework-derivatives β-Co(OH)2 for multiple colorimetric assays

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A hollow metal organic framework derivative β-Co(OH)2 has been prepared, which possesses oxidase and peroxidase-like activities. Oxidase-like activity is derived from the generation of free radicals, and peroxidase-like activity is related to the electron transfer process. Unlike other nanozymes with dual enzyme-like activities, β-Co(OH)2 possesses pH-responsive enzyme-like activities, among which the β-Co(OH)2 exhibits superior oxidase and peroxidase-like activities under pH of 4 and 6, respectively, which could avoid mutual interference between multiple enzymes. Based on the phenomenon that enzyme-like activities of β-Co(OH)2 can catalyze colorless TMB to generate blue oxidized TMB (oxTMB) with absorption peak at 652 nm, the sensors integrating total antioxidant capacity and H2O2 quantification were developed. The oxidase-like activity-based colorimetric system has a sensitive response to ascorbic acid, Trolox, and gallic acid, in which the limit of detection for those antioxidant substances was 0.54 μM, 1.26 μM, and 14.34 μM, respectively. The sensors based on peroxidase-like activity had low limit of detection of 1.42 μM for H2O2 and a linear range of 5–1000 μM. The proposed method can be well applied to the detection of the total antioxidant capacity of kiwi, Vc tables, orange and tea extract with high accuracy, and H2O2 determination in milk and glucose detection in beverages with satisfactory recovery (within 97–106%).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murphy EC, Friedman AJ (2019) Hydrogen peroxide and cutaneous biology: translational applications, benefits, and risks. J Am Acad Dermatol 81(6):1379–1386

    Article  CAS  PubMed  Google Scholar 

  2. Antunes F, Brito PM (2017) Quantitative biology of hydrogen peroxide signaling. Redox Biol 13:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Forbes-Hernandez TY, Gasparrini M, Afrin S, Bompadre S, Mezzetti B, Quiles JL, Giampieri F, Battino M (2016) The healthy effects of strawberry polyphenols: which strategy behind antioxidant capacity? Crit Rev Food Sci Nutr 56:46–59

    Article  Google Scholar 

  4. Parsons BJ (2017) Antioxidants in food: the significance of characterisation, identification, chemical and biological assays in determining the role of antioxidants in food. Foods 6(8):68

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lou Z, Zhao S, Wang Q, Wei H (2019) N-doped carbon as peroxidase-like nanozymes for total antioxidant capacity assay. Anal Chem 91(23):15267–15274

    Article  CAS  PubMed  Google Scholar 

  6. Li C, Wu R, Zou J, Zhang T, Zhang S, Zhang Z, Hu X, Yan Y, Ling X (2018) MNPs@ anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H2O2 released from living cells. Biosens Bioelectron 116:81–88

    Article  CAS  PubMed  Google Scholar 

  7. de Araújo RI, Gomes SM, Fernandes IPG, Oliveira-Brett AM (2019) Phenolic composition and total antioxidant capacity by electrochemical, spectrophotometric and HPLC-EC evaluation in portuguese red and white wines. Electroanalysis 31(5):936–945

    Article  Google Scholar 

  8. Chang J, Li H, Hou T, Duan W, Li F (2018) based fluorescent sensor via aggregation induced emission fluorogen for facile and sensitive visual detection of hydrogen peroxide and glucose. Biosens Bioelectron 104:152–157

    Article  CAS  PubMed  Google Scholar 

  9. Ni P, Liu S, Wang B, Chen C, Jiang Y, Zhang C, Chen J, Lu Y (2021) Light-responsive Au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. J Hazard Mater 411:125106

    Article  CAS  PubMed  Google Scholar 

  10. Kim MS, Lee J, Kim HS, Cho A, Shim KH, Le TN, An SSA, Han JW, Kim MI, Lee J (2020) Heme cofactor-resembling Fe–N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv Funct Mater 30(1):1905410

    Article  CAS  Google Scholar 

  11. Song C, Ding W, Zhao W, Liu H, Wang J, Yao Y, Yao C (2020) High peroxidase-like activity realized by facile synthesis of FeS2 nanoparticles for sensitive colorimetric detection of H2O2 and glutathione. Biosens Bioelectron 151:111983

    Article  CAS  PubMed  Google Scholar 

  12. Xu X, Luo P, Yang H, Pan S, Liu H, Hu X (2021) Regulating the enzymatic activities of metal-ATP nanoparticles by metal doping and their application for H2O2 detection. Sensors Actuators B Chem 335:129671

    Article  CAS  Google Scholar 

  13. Lu J, Zhang H, Li S, Guo S, Shen L, Zhou T, Zhong H, Wu L, Meng Q, Zhang Y (2020) Oxygen-vacancy-enhanced peroxidase-like activity of reduced Co3O4 nanocomposites for the colorimetric detection of H2O2 and glucose. Inorg Chem 59(5):3152–3159

    Article  CAS  PubMed  Google Scholar 

  14. Han X, Liu L, Gong H, Luo L, Han Y, Fan J, Xu C, Yue T, Wang J, Zhang W (2022) Dextran-stabilized Fe-Mn bimetallic oxidase-like nanozyme for total antioxidant capacity assay of fruit and vegetable food. Food Chem 371:131115

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Zhang W, Peng M, Ren G, Guan L, Li K, Lin Y (2020) ZIF-67 as a template generating and tuning “raisin pudding”-type nanozymes with multiple enzyme-like activities: toward online electrochemical detection of 3, 4-dihydroxyphenylacetic acid in living brains. ACS Appl Mater Interfaces 12(26):29631–29640

    CAS  PubMed  Google Scholar 

  16. Lian J, He Y, Li N, Liu P, Liu Z, Liu Q (2021) Magnetic flower-like Fe-doped CoO nanocomposites with dual enzyme-like activities for facile and sensitive determination of H2O2 and dopamine. Inorg Chem 60(3):1893–1901

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Yang J, Cheng J, Xu Y, Chen W, Li Y (2021) Facile preparation of four-in-one nanozyme catalytic platform and the application in selective detection of catechol and hydroquinone. Sensors Actuators B Chem 337:129763

    Article  CAS  Google Scholar 

  18. Wu T, Ma Z, Li P, Lu Q, Liu M, Li H, Zhang Y, Yao S (2019) Bifunctional colorimetric biosensors via regulation of the dual nanoenzyme activity of carbonized FeCo-ZIF. Sensors Actuators B Chem 290:357–363

    Article  CAS  Google Scholar 

  19. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076

    Article  CAS  PubMed  Google Scholar 

  20. Moreno-Castilla C, Naranjo Á, López-Ramón MV, Siles E, López-Peñalver JJ, de Almodóvar JMR (2022) Influence of the hydrodynamic size And ζ potential of manganese ferrite nanozymes as peroxidase-mimicking catalysts at pH 4 in different buffers. J Catal 414:179–185

    Article  CAS  Google Scholar 

  21. Chen L, Xing S, Lei Y, Chen Q, Zou Z, Quan K, Qing Z, Liu J, Yang R (2021) A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections. Angew Chem Int Ed 60(44):23534–23539

    Article  CAS  Google Scholar 

  22. Luo L, Xi C, Zhuo J, Liu G, Yang S, Nian Y, Sun J, Zhu M-Q, Wang J (2022) A portable dual-mode colorimetric platform for sensitive detection of Hg2+ based on NiSe2 with Hg2+-Activated oxidase-like activity. Biosens Bioelectron 215:114519

    Article  CAS  PubMed  Google Scholar 

  23. Lyu F, Bai Y, Li Z, Xu W, Wang Q, Mao J, Wang L, Zhang X, Yin Y (2017) Self-templated fabrication of CoO–MoO2 nanocages for enhanced oxygen evolution. Adv Funct Mater 27(34):1702324

    Article  Google Scholar 

  24. Qin J-F, Xie J-Y, Wang N, Dong B, Chen T-S, Lin Z-Y, Liu Z-Z, Zhou Y-N, Yang M, Chai Y-M (2020) Surface construction of loose Co(OH)2 shell derived from ZIF-67 nanocube for efficient oxygen evolution. J Colloid Interface Sci 562:279–286

    Article  CAS  PubMed  Google Scholar 

  25. Yang Z, Ma Q, Han L, Tao K (2019) Design of Mo-doped cobalt sulfide hollow nanocages from zeolitic imidazolate frameworks as advanced electrodes for supercapacitors. Inorg Chem Front 6(8):2178–2184

    Article  CAS  Google Scholar 

  26. Zhang G, Zang S, Wang X (2015) Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation. ACS Catal 5(2):941–947

    Article  CAS  Google Scholar 

  27. Tao X, Pan P, Huang T, Chen L, Ji H, Qi J, Sun F, Liu W (2020) In-situ construction of Co(OH)2 nanoparticles decorated urchin-like WO3 for highly efficient degradation of sulfachloropyridazine via peroxymonosulfate activation: intermediates and DFT calculation. Chem Eng J 395:125186

    Article  CAS  Google Scholar 

  28. Zhu Q, Yang J, Peng Z, He Z, Chen W, Tang H, Li Y (2021) Selective detection of glutathione by flower-like NiV2O6 with only peroxidase-like activity at neutral pH. Talanta 234:122645

    Article  CAS  PubMed  Google Scholar 

  29. Luo L, Huang L, Liu X, Zhang W, Yao X, Dou L, Zhang X, Nian Y, Sun J, Wang J (2019) Mixed-valence Ce-BPyDC metal–organic framework with dual enzyme-like activities for colorimetric biosensing. Inorg Chem 58(17):11382–11388

    Article  CAS  PubMed  Google Scholar 

  30. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  PubMed  Google Scholar 

  31. Nian Y, Luo L, Zhu W, Yang C, Zhang L, Li M, Zhang W, Wang J (2021) Does the intrinsic photocontrollable oxidase-mimicking activity of 2-aminoterephthalic acid dominate the activity of metal–organic frameworks? Inorg Chem Front 8(14):3482–3490

    Article  CAS  Google Scholar 

  32. Su H, Liu D-D, Zhao M, Hu W-L, Xue S-S, Cao Q, Le X-Y, Ji L-N, Mao Z-W (2015) Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl Mater Interfaces 7(15):8233–8242

    Article  CAS  PubMed  Google Scholar 

  33. Zhang F, Li Y, Li X, Liu R, Sang Y, Wang X, Wang S (2022) Nanozyme-enabled sensing strategies for determining the total antioxidant capacity of food samples. Food Chem 384:132412

    Article  CAS  PubMed  Google Scholar 

  34. Song N, Zhang Y, Ren S, Wang C, Lu X (2022) Rational design of conducting polymer-derived tubular carbon nanoreactors for enhanced enzyme-like catalysis and total antioxidant capacity bioassay application. Anal Chem 94(33):11695–11702

    Article  CAS  PubMed  Google Scholar 

  35. Li Z, Liu F, Zhu S, Liu Z, Zhang F, Ni P, Chen C, Jiang Y, Lu Y (2022) Carbon nanotubes regulated by oxidizing functional groups as peroxidase mimics for total antioxidant capacity determination. Biosens Bioelectron X 11:100190

    CAS  Google Scholar 

  36. Liang Y, Li R, Sun H, Dan J, Su Z, Kang Y, Zhang Q, Shi S, Wang J, Zhang W (2022) Functionalized natural melanin nanoparticle mimics natural peroxidase for total antioxidant capacity determination. Sensors Actuators B Chem 359:131541

    Article  CAS  Google Scholar 

  37. Cui C, Wang Q, Liu Q, Deng X, Liu T, Li D, Zhang X (2018) Porphyrin-based porous organic framework: An efficient and stable peroxidase-mimicking nanozyme for detection of H2O2 and evaluation of antioxidant. Sensors Actuators B Chem 277:86–94

    Article  CAS  Google Scholar 

  38. FDA U (2010) CFR 184.1366: hydrogen peroxide. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1366. Accessed 28 Mar 2023

Download references

Funding

The study was funded by a research grant from the Open competition Research Projects of Xuchang University (ID No. 20220502), the Major Science and Technology Projects in Henan Province, China (ID No. 201300110300), and the Training Program for Young Cadre Teachers in Colleges and Universities in Henan Province, China (ID No.2016GGJS216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianlong Wang or Jihong Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1.84 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Luo, L., Nian, Y. et al. pH-responsive dual-enzyme mimics based on hollow metal organic framework-derivatives β-Co(OH)2 for multiple colorimetric assays. Microchim Acta 190, 240 (2023). https://doi.org/10.1007/s00604-023-05816-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05816-w

Keywords

Navigation