Skip to main content
Log in

Determination of acetic acid in enzymes based on the cataluminescence activity of graphene oxide–supported carbon nanotubes coated with NiMn layered double hydroxides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A cataluminescence (CTL) method has been developed for the rapid determination of acetic acid in enzyme products. The NiMn LDH/CNT/GO was synthesized based on the nanohybridization of NiMn layered double hydroxide (NiMn LDH), carbon nanotubes (CNTs), and graphene oxide (GO). The composite has excellent CTL activity against acetic acid. It could be ascribed to the larger specific surface area and more exposure to active sites. NiMn LDH/CNT/GO is used as a catalyst in the CTL method based on its special structure and advantages. There is a linear relationship between CTL response and the acetic acid concentration in the range 0.31–12.00 mg·L−1 with the detection limit of 0.10 mg·L−1. The developed method is rapid and takes only about 13 s. The method is applied to the determination of acetic acid in enzyme samples with little sample preparation. The result of the CTL method shows good agreement with that of the gas chromatography method. The proposed CTL method possesses promising potential in the quality monitoring of enzymes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kuwaki S, Nakajima N, Tanaka H, Ishihara K (2012) Plant-based paste fermented by lactic acid bacteria and yeast: functional analysis and possibility of application to functional foods. Biochem Insights 5:21–29. https://doi.org/10.4137/bci.s10529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hugenholtz J (2013) Traditional biotechnology for new foods and beverages. Curr Opin Biotechnol 24:155–159. https://doi.org/10.1016/j.copbio.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  3. Shui G, Leong LP (2002) Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. J Chromatogr A 977:89–96. https://doi.org/10.1016/S0021-9673(02)01345-6

    Article  CAS  PubMed  Google Scholar 

  4. Scherer R, Rybka ACP, Ballus CA, Meinhart AD, Teixeira J, Godoy HT (2012) Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chem 135:150–154. https://doi.org/10.1016/j.foodchem.2012.03.111

    Article  CAS  Google Scholar 

  5. Araujo CST, de Carvalho JL, Mota DR, de Araujo CL, Coelho NMM (2005) Determination of sulphite and acetic acid in foods by gas permeation flow injection analysis. Food Chem 92:765–770. https://doi.org/10.1016/j.foodchem.2004.10.032

    Article  CAS  Google Scholar 

  6. Wang C, Ma S, Sun A, Qin R, Yang F, Li X, Li F, Yang X (2014) Characterization of electrospun Pr-doped ZnO nanostructure for acetic acid sensor. Sens Actuator B-Chem 193:326–333. https://doi.org/10.1016/j.snb.2013.11.058

    Article  CAS  Google Scholar 

  7. Turemis M, Zappi D, Giardi MT, Basile G, Ramanaviciene A, Kapralovs A, Ramanavicius A, Viter R (2020) ZnO/polyaniline composite based photoluminescence sensor for the determination of acetic acid vapor. Talanta 211:120658. https://doi.org/10.1016/j.talanta.2019.120658

    Article  CAS  PubMed  Google Scholar 

  8. Zhou K, Xu J, Gu C, Hou C, Ren H (2017) Simultaneous determination of trimethylamine, formaldehyde and benzene via the cataluminescence of In3LaTi2O10 nanoparticles. Microchim Acta 184:2047–2053. https://doi.org/10.1007/s00604-017-2221-4

    Article  CAS  Google Scholar 

  9. Zhou K, Fan H, Gu C, Liu B (2016) Simultaneous determination of formaldehyde and hydrogen sulfide in air using the cataluminescence of nanosized Zn3SnLa2O8. Microchim Acta 183:1063–1068. https://doi.org/10.1007/s00604-015-1732-0

    Article  CAS  Google Scholar 

  10. Chu Y, Zhang Q, Li Y, Xu Z, Long W (2014) A cataluminescence sensor for propionaldehyde based on the use of nanosized zirconium dioxide. Microchim Acta 181:1125–1132. https://doi.org/10.1007/s00604-014-1220-y

    Article  CAS  Google Scholar 

  11. Pei X, Hu J, Song H, Zhang L, Lv Y (2021) Ratiometric cataluminescence sensor of amine vapors for discriminating meat spoilage. Anal Chem 93:6692–6697. https://doi.org/10.1021/acs.analchem.1c00034

    Article  CAS  PubMed  Google Scholar 

  12. Zhong Y, Chen Y, Hu Y, Li G, Xiao X (2021) Multifunctional MgO/HKUST-1 composite for capture, catalysis, and cyclic cataluminescence detection of esters all-in-one to rapidly identify scented products. Anal Chem 93:16203–16212. https://doi.org/10.1021/acs.analchem.1c04100

    Article  CAS  PubMed  Google Scholar 

  13. Zhang R, Huang W, Li G, Hu Y (2017) Noninvasive strategy based on real-time in vivo cataluminescence monitoring for clinical breath analysis. Anal Chem 89:3353–3361. https://doi.org/10.1021/acs.analchem.6b03898

    Article  CAS  PubMed  Google Scholar 

  14. Hu J, Zhang L, Song H, Lv Y (2021) Evaluating the band gaps of semiconductors by cataluminescence. Anal Chem 93:14454–14461. https://doi.org/10.1021/acs.analchem.1c02913

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Chen Y, He N, Lu C (2014) Acetone cataluminescence as an indicator for evaluation of heterogeneous base catalysts in biodiesel production. Anal Chem 86:870–875. https://doi.org/10.1021/ac4034399

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Song H, Su Y, Lv Y (2015) Advances in nanomaterial-assisted cataluminescence and its sensing applications. Trac-Trends Anal Chem 67:107–127. https://doi.org/10.1016/j.trac.2015.01.008

    Article  CAS  Google Scholar 

  17. Li L, Wei C, Song H, Yang Y, Xue Y, Deng D, Lv Y (2019) Cataluminescence coupled with photoassisted technology: a highly efficient metal-free gas sensor for carbon monoxide. Anal Chem 91:13158–13164. https://doi.org/10.1021/acs.analchem.9b03452

    Article  CAS  PubMed  Google Scholar 

  18. Na N, Liu H, Han J, Han F, Liu H, Ouyang J (2012) Plasma-assisted cataluminescence sensor array for gaseous hydrocarbons discrimination. Anal Chem 84:4830–4836. https://doi.org/10.1021/ac3004105

    Article  CAS  PubMed  Google Scholar 

  19. Zhong Y, Hu Y, Li G, Zhang R (2019) Multistage signals based on cyclic chemiluminescence for decoding complex samples. Anal Chem 91:12063–12069. https://doi.org/10.1021/acs.analchem.9b03189

    Article  CAS  PubMed  Google Scholar 

  20. Hu J, Zhang L, Song H, Hu J, Lv Y (2019) Ratiometric cataluminescence for rapid recognition of volatile organic compounds based on energy transfer process. Anal Chem 91:4860–4867. https://doi.org/10.1021/acs.analchem.9b00592

    Article  CAS  PubMed  Google Scholar 

  21. Munyemana JC, Chen J, Han Y, Zhang S, Qiu H (2021) A review on optical sensors based on layered double hydroxides nanoplatforms. Microchim Acta 188:80. https://doi.org/10.1007/s00604-021-04739-8

    Article  CAS  Google Scholar 

  22. Li Z, Xi W, Lu C (2015) Hydrotalcite-supported gold nanoparticle catalysts as a low temperature cataluminescence sensing platform. Sens Actuator B-Chem 219:354–360. https://doi.org/10.1016/j.snb.2015.05.030

    Article  CAS  Google Scholar 

  23. Zhong Y, Li M, Tan R, Xiao X, Hu Y, Li G (2021) Co(III) doped-CoFe layered double hydroxide growth with graphene oxide as cataluminescence catalyst for detection of carbon monoxide. Sens Actuator B-Chem 347:130600. https://doi.org/10.1016/j.snb.2021.130600

    Article  CAS  Google Scholar 

  24. Zhou J, Min M, Liu Y, Tang J, Tang W (2018) Layered assembly of NiMn-layered double hydroxide on graphene oxide for enhanced non-enzymatic sugars and hydrogen peroxide detection. Sensor Actuat B-Chem 260:408–417. https://doi.org/10.1016/j.snb.2018.01.072

    Article  CAS  Google Scholar 

  25. Abolghasemi MM, Amirifard H, Piryaei M (2019) Bio template route for fabrication of a hybrid material composed of hierarchical boehmite, layered double hydroxides (Mg-Al) and porous carbon on a steel fiber for solid phase microextraction of agrochemicals. Microchim Acta 186:678. https://doi.org/10.1007/s00604-019-3782-1

    Article  CAS  Google Scholar 

  26. Jiao W, Ding G, Wang L, Liu Y, Zhan T (2022) Polyaniline functionalized CoAl-layered double hydroxide nanosheets as a platform for the electrochemical detection of carbaryl and isoprocarb. Microchim Acta 189:78. https://doi.org/10.1007/s00604-022-05183-y

    Article  CAS  Google Scholar 

  27. Li M, Hu Y, Li G (2021) A study on the cataluminescence of propylene oxide on FeNi layered double hydroxides/graphene oxide. New J Chem 45:11823–11830. https://doi.org/10.1039/d1nj01411k

    Article  CAS  Google Scholar 

  28. Zhang K, Wang M, Zeng H, Li Z (2022) Ag-Ag2O decorated multi-walled carbon nanotubes/NiCoAl hydrotalcite sensor for trace nitrite quantification. Microchim Acta 189:411. https://doi.org/10.1007/s00604-022-05513-0

    Article  CAS  Google Scholar 

  29. Yang W, Gao Z, Wang J, Ma J, Zhang M, Liu L (2013) Solvothermal one-step synthesis of Ni–Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl Mater Interfaces 5:5443–5454. https://doi.org/10.1021/am4003843

    Article  CAS  PubMed  Google Scholar 

  30. Yu C, Yang J, Zhao C, Fan X, Wang G, Qiu J (2014) Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon. Nanoscale 6:3097–3104. https://doi.org/10.1039/c3nr05477b

    Article  CAS  PubMed  Google Scholar 

  31. Wu L, Zhang L, Sun M, Liu R, Yu L, Lv Y (2017) Metal-Free Cataluminescence Gas Sensor for Hydrogen Sulfide Based on Its Catalytic Oxidation on Silicon Carbide Nanocages. Anal Chem 89:13666–13672. https://doi.org/10.1021/acs.analchem.7b04566

    Article  CAS  PubMed  Google Scholar 

  32. Li F, Liu Y, Li Z, Li Q, Liu X, Cui H (2020) Cu(II)-regulated on-site assembly of highly chemiluminescent multifunctionalized carbon nanotubes for inorganic pyrophosphatase activity determination. ACS Appl Mater Interfaces 12:2903–2909. https://doi.org/10.1021/acsami.9b20259

    Article  CAS  PubMed  Google Scholar 

  33. Huang X, Huang Z, Zhang L, Liu R, Lv Y (2020) Highly efficient cataluminescence gas sensor for acetone vapor based on UIO-66 metal-organic frameworks as preconcentrator. Sens Actuator B-Chem 312:127952. https://doi.org/10.1016/j.snb.2020.127952

    Article  CAS  Google Scholar 

  34. Gong G, Zhu H (2015) Development of highly sensitive sensor system for methane utilizing cataluminescence. Luminescence 31:183–189. https://doi.org/10.1002/bio.2943

    Article  CAS  PubMed  Google Scholar 

  35. Yu Z, Gong H, Li Y, Xu J, Zhang J, Zeng Y, Liu X, Tang D (2021) Chemiluminescence-derived self-powered photoelectrochemical immunoassay for detecting a low-abundance disease-related protein. Anal Chem 93:13389–13397. https://doi.org/10.1021/acs.analchem.1c03344

    Article  CAS  PubMed  Google Scholar 

  36. Yin Z, Zhu L, Lv Z, Li M, Tang D (2021) Persistent luminescence nanorods-based autofluorescence-free biosensor for prostate-specific antigen detection. Talanta 233:122563. https://doi.org/10.1016/j.talanta.2021.122563

    Article  CAS  PubMed  Google Scholar 

  37. Tao Y, Cao X, Peng Y, Liu Y, Zhang R (2012) Cataluminescence sensor for gaseous acetic acid using a thin film of In2O3. Microchim Acta 176:485–491. https://doi.org/10.1007/s00604-011-0745-6

    Article  CAS  Google Scholar 

  38. Wang S, Zhu Y, Zhang Y, Wang B, Yan H, Liu W, Lin Y (2020) Manganese-based layered double hydroxide nanoparticles as highly efficient ozone decomposition catalysts with tunable valence state. Nanoscale 12:12817–12823. https://doi.org/10.1039/d0nr02796k

    Article  CAS  PubMed  Google Scholar 

  39. Zhou D, Hou Q, Liu W, Ren X (2017) Rapid determination of formic and acetic acids in biomass hydrolysate by headspace gas chromatography. J Ind Eng Chem 47:281–287. https://doi.org/10.1016/j.jiec.2016.11.044

    Article  CAS  Google Scholar 

  40. Xia H, Zhou R, Zheng C, Wu P, Tian Y, Hou X (2013) Solution-free, in situ preparation of nano/micro CuO/ZnO in dielectric barrier discharge for sensitive cataluminescence sensing of acetic acid. Analyst 138:3687–3691. https://doi.org/10.1039/c3an00407d

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the State Key Program of National Natural Science of China (no. 22134007), the National Natural Science Foundation of China (no. 21976213), the National Key Research and Development Program of China (no. 2019YFC1606101), and the Research and Development Plan for Key Areas of Food Safety in Guangdong Province of China (no. 2019B020211001), respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufei Hu or Gongke Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mengmeng Ji, Yanhui Zhong and Ming Li are co-first authors of the paper.

Supplementary information

ESM 1

Appendix A. Supplementary data. Supplementary material related to this article can be found, in the online version, at doi: (DOC 2472 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, M., Zhong, Y., Li, M. et al. Determination of acetic acid in enzymes based on the cataluminescence activity of graphene oxide–supported carbon nanotubes coated with NiMn layered double hydroxides. Microchim Acta 190, 231 (2023). https://doi.org/10.1007/s00604-023-05808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05808-w

Keywords

Navigation