Skip to main content
Log in

A portable electrochemical immunosensor for ovarian cancer uses hierarchical microporous carbon material from waste coffee grounds

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A simple label-free electrochemical immunosensor for ovarian cancer (OC) detection was developed using a hierarchical microporous carbon material fabricated from waste coffee grounds (WCG). The analysis method exploited near-field communication (NFC) and a smartphone-based potentiostat. Waste coffee grounds were pyrolyzed with potassium hydroxide and used to modify a screen-printed electrode. The modified screen-printed electrode was decorated with gold nanoparticles (AuNPs) to capture a specific antibody. The modification and immobilization processes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The sensor had an effective dynamic range of 0.5 to 50.0 U mL-1 of cancer antigen 125 (CA125) tumor marker with a correlation coefficient of 0.9995. The limit of detection (LOD) was 0.4 U mL-1. A comparison of the results obtained from human serum analysis with the proposed immunosensor and the results obtained from the clinical method confirmed the accuracy and precision of the proposed immunosensor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.

Similar content being viewed by others

References

  1. Shabir S, Gill PK (2020) Global scenario on ovarian cancer – Its dynamics, relative survival, treatment, and epidemiology. Adesh Univ J Med Sci Res 2:17–25

    Google Scholar 

  2. Charkhchi P, Cybulski C, Gronwald J, Wong FO, Narod SA, Akbari MR (2020) CA125 and ovarian cancer: a comprehensive review. Cancers 12:3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shen F, Chen S, Gao Y, Dai X, Chen Q (2017) The prevalence of malignant and borderline ovarian cancer in pre- and post-menopausal Chinese women. Oncotarget 8:80589–80594

    Article  PubMed  PubMed Central  Google Scholar 

  4. Doubeni CA, Doubeni AR, Myers AE (2016) Diagnosis and management of ovarian cancer. Am Fam Physician 93:937–944

    PubMed  Google Scholar 

  5. Bayoumy S, Hyytiä H, Leivo J, Talha SM, Huhtinen K, Poutanen M, Hynninen J, Perheentupa A, Lamminmäki U, Gidwani K, Pettersson K (2020) Glycovariant-based lateral flow immunoassay to detect ovarian cancer–associated serum CA125. Commun Biol 3:460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Wang ZC, Luo L, Mu CY, Xu J, Feng Q, Li SB, Gu B, Ma P, Lan T (2020) The clinical value of the combined detection of sEGFR, CA125 and HE4 for epithelial ovarian cancer diagnosis. Eur Rev Med Pharmacol Sci 24:604–610

    CAS  PubMed  Google Scholar 

  7. Kumar N, Sharma S, Nara S (2018) Dual gold nanostructure-based electrochemical immunosensor for CA125 detection, Applied. Nanoscience 8:1843–1853

    Article  CAS  Google Scholar 

  8. Sadighbayan D, Sadighbayan K, Tohid-kia MR, Khosroushahi AY, Hasanzadeh M (2019) Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. TrAC Trends Anal Chem 118:73–88

    Article  CAS  Google Scholar 

  9. Madhvapathy SR, Wang H, Kong J, Zhang M, Lee JY, Park JB, Jang H, Xie Z, Cao J, Avila R, Wei C, D'Angelo V, Zhu J, Chung HU, Coughlin S, Patel M, Winograd J, Lim J, Banks A et al (2020) Reliable, low-cost, fully integrated hydration sensors for monitoring and diagnosis of inflammatory skin diseases in any environment. Sci Adv 6:1–12

    Article  Google Scholar 

  10. Xu G, Cheng C, Yuan W, Liu Z, Zhu L, Li X, Lu Y, Chen Z, Liu J, Cui Z, Liu J, Men H, Liu Q (2019) Smartphone-based battery-free and flexible electrochemical patch for calcium and chloride ions detections in biofluids. Sens Actuators B 297:126743

    Article  CAS  Google Scholar 

  11. Teengam P, Siangproh W, Tontisirin S, Jiraseree-amornkun A, Chuaypen N, Tangkijvanich P, Henry CS, Ngamrojanavanich N, Chailapakul O (2021) NFC-enabling smartphone-based portable amperometric immunosensor for hepatitis B virus detection. Sens Actuators B 326:128825

    Article  CAS  Google Scholar 

  12. Merazzo KJ, Totoricaguena-Gorriño J, Fernández-Martín E, Del Campo FJ, Baldrich E (2021) Smartphone-enabled personalized diagnostics: current status and future prospects. Diagnostics (Basel, Switzerland) 11:1067

    PubMed  Google Scholar 

  13. Roda A, Michelini E, Zangheri M, Fusco M, Calabria D, Simoni P (2015) Smartphone-based biosensors: a critical review and perspectives. TrAC Trends Anal Chem 79:317–325

    Article  Google Scholar 

  14. Samoggia A, Riedel B (2019) Consumers' perceptions of coffee health benefits and motives for coffee consumption and purchasing. Nutrients 11:653

    Article  PubMed  PubMed Central  Google Scholar 

  15. Figueroa Campos GA, Perez JPH, Block I, Sagu ST, Saravia Celis P, Taubert A, Rawel HM (2021) Preparation of activated carbons from spent coffee grounds and coffee parchment and assessment of their adsorbent efficiency. Processes 9:1396

    Article  CAS  Google Scholar 

  16. Mariana M, Mulana F, Yunardi Y, Ismail T, Hafdiansyah M (2018) Activation and characterization of waste coffee grounds as bio-sorbent. IOP Conf SerMater Sci Eng 334:012029

    Article  Google Scholar 

  17. Pagalan E Jr, Sebron M, Gomez S, Salva SJ, Ampusta R, Macarayo AJ, Joyno C, Ido A, Arazo R (2020) Activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye. Ind Crop Prod 145:111953

    Article  Google Scholar 

  18. Biegun M, Dymerska A, Chen X, Mijowska E (2020) Study of the active carbon from used coffee grounds as the active material for a high-temperature stable supercapacitor with ionic-liquid electrolyte. Materials (Basel, Switzerland) 13:3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chung DY, Son YJ, Yoo JM, Kang JS, Ahn C-Y, Park S, Sung Y-E (2017) Coffee waste-derived hierarchical porous carbon as a highly active and durable electrocatalyst for electrochemical energy applications. ACS Appl Mater Interfaces 9:41303–41313

    Article  CAS  PubMed  Google Scholar 

  20. Park M, Yun YS, Cho S, Kim NR, Jin HJ (2016) Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors. Carbon Lett 19:66–71

    Article  Google Scholar 

  21. Malekzad H, Zangabad PS, Mirshekari H, Karimi M, Hamblin MR (2017) Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 6:301–329

    Article  CAS  PubMed  Google Scholar 

  22. Khashayar P, Amoabediny G, Larijani B, Hosseini M, Verplancke R, Schaubroeck D, Keersmaecker MD, Adriaens M, Vanfleteren J (2016) Characterization of gold nanoparticle layer deposited on gold electrode by various techniques for improved sensing abilities, Biointerface Research in Applied. Chemistry 6:1380–1390

    CAS  Google Scholar 

  23. Pingarrón J, Yáñez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866

    Article  Google Scholar 

  24. Wang C-H, Wen W-C, Hsu H-C, Yao B-Y (2016) High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor. Adv Powder Technol 27:1387–1395

    Article  CAS  Google Scholar 

  25. Jagdale P, Ziegler D, Rovere M, Tulliani JM (2019) Tagliaferro, Alberto, Waste coffee ground biochar: a material for humidity sensors. Sensors (Basel, Switzerland) 19:801

    Article  PubMed  Google Scholar 

  26. Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B (2016) Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens Bio-Sens Res 9:17–22

    Article  Google Scholar 

  27. Zhang J, Xue J, Li P, Huang S, Feng H, Luo H (2018) Preparation of metal-organic framework-derived porous carbon and study of its supercapacitive performance. Electrochim Acta 284:328–335

    Article  CAS  Google Scholar 

  28. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  29. Lozano-Castelló D, Calo JM, Cazorla-Amorós D, Linares-Solano A (2007) Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 45:2529–2536

    Article  Google Scholar 

  30. Otowa T, Tanibata R, Itoh M (1993) Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas Sep Purif 7:241–245

    Article  CAS  Google Scholar 

  31. Qiao W, Yoon S-H, Mochida I (2006) KOH activation of needle coke to develop activated carbons for high-performance EDLC. Energy Fuel 20:1680–1684

    Article  CAS  Google Scholar 

  32. Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795

    Article  Google Scholar 

  33. Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131:7016–7022

    Article  CAS  PubMed  Google Scholar 

  34. El-Azazy M, El-Shafie AS, Morsy H (2021) Biochar of spent coffee grounds as per se and impregnated with TiO2: promising waste-derived adsorbents for balofloxacin. Molecules 26:2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barrios Rodriguez Y, Collazos Escobar G, Guzmán N (2021) ATR-FTIR for characterizing and differentiating dried and ground coffee cherry pulp of different varieties (Coffea Arabica L.). Eng Agric 41:70–77

    Google Scholar 

  36. Chou W-L, Wang C-T, Huang K-Y, Chang Y-C, Shu CM (2012) Investigation of indium ions removal from aqueous solutions using spent coffee grounds. Int J Phys Sci 7:2445–2454

    CAS  Google Scholar 

  37. Gao Z, Li Y, Zhang C, Zhang S, Li F, Wang P, Wang H, Wei Q (2019) Label-free electrochemical immunosensor for insulin detection by high-efficiency synergy strategy of Pd NPs@3D MoSx towards H2O2. Biosens Bioelectron 126:108–114

    Article  CAS  PubMed  Google Scholar 

  38. Swartz ME (1997) Analytical method development and validation. CRC Press

    Google Scholar 

  39. AOAC (2016) Guidelines for standard method performance requirements. AOAC International, Rockville, Maryland

    Google Scholar 

  40. Örnemark BMAU (2014) The Fitness for purpose of analytical methods – a laboratory guide to method validation and related topics. Eurachem Guide, Gembloux, Belgique

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the National Research Council of Thailand (NRCT), Ministry of Higher Education, Science, Research and Innovation, the National Science, Research and Innovation Fund (NSRF) and Prince of Songkla University (Grant No SCI6601337S), the center of Excellence for Trace Analysis and Biosensor (TAB-CoE), the Talent Management Project, the Forensic Science Innovation and Service Center, the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Division of Health and Applied Sciences, the Division of Physical Science, the Faculty of Science, Prince of Songkla University, Hat Yai, Thailand, and Silicon Craft Technology PLC. Thanks also go to Mr. Thomas Duncan Coyne, Faculty of Science, Prince of Songkla University, Hatyai, Thailand for assistance with the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warakorn Limbut.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 782 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotchim, S., Thavarungkul, P., Kanatharana, P. et al. A portable electrochemical immunosensor for ovarian cancer uses hierarchical microporous carbon material from waste coffee grounds. Microchim Acta 190, 232 (2023). https://doi.org/10.1007/s00604-023-05798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05798-9

Keywords

Navigation