Skip to main content
Log in

Development of cloth-based microfluidic devices for rapid determination of histamine in fish and fishery products

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A cloth-based analytical device combined with electrochemiluminescence detection (CAD–ECL) was described for rapid determination  of histamine (HA). The CAD device was produced by screen-printing a conductive carbon ink onto a patterned hydrophobic electrochemical microfluidic chamber to fabricate the three-carbon electrode system on a single hydrophilic cloth. The introduction of carbon nanodots linked to chitosan on the working carbon electrode surface enhanced the catalytic performance and overcame the resistance of the cotton fiber material. On this basis, the enhancement of the electrochemiluminescence (ECL) signal of the tris(2,2′-bipyridyl) ruthenium(II) complex, caused by HA, was observed in a phosphate buffer solution at pH 7.6. The proposed CAD–ECL sensor was successfully applied to the quantification of HA in fish and fishery samples with good linearity between ECL intensity and the logarithm of HA concentration in the range 1.0 to 1000.0 µg L−1 with a low detection limit of 0.82 µg L−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data of this reasearch is included in the manuscript and supplementary material, any other data can be provided upon request.

References

  1. Becker K, Southwick K, Reardon J, Berg R, MacCormack JN (2001) Histamine poisoning associated with eating tuna burgers. J Am Med Assoc 285:2977–2978

    Article  Google Scholar 

  2. EC Commission Regulation No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs, Official Journal of European Union, 2005

  3. Feng C, Teuber S, Gershwin M (2016) Histamine (Scombroid) Fish Poisoning: a Comprehensive Review. Clin Rev Allergy Immunol 50:64–69

    Article  CAS  PubMed  Google Scholar 

  4. Fen NY, Sali AT, Ahmad R, Tze LM, Abdullah WNW (2011) Origin of proteolytic enzymes involved in production of Malaysian fish sauce, Budu. Thai J Agric Sci 44:542–547

    Google Scholar 

  5. FDA fish and fishery products hazards and controls guidance, Fourth Edition, Chapter 7, 113, April 2011

  6. EU Commission Regulation No 1019/2013 of 23 October 2013, amending Annex I to Regulation (EC) No 2073/2005 as regards histamine in fishery products, Offic J E U 2013. http://faolex.fao.org/docs/pdf/eur127944.pdf. Accessed 30 Sept 2022

  7. Brillantes S, Samosorn W (2001) Determination of histamine in fish sauce from Thailand using a solid phase extraction and high-performance liquid chromatography. Fish Sci 67:1163–1168

    Article  Google Scholar 

  8. Rogers P, Staruszkiewicz W (2000) Histamine test kit comparison. J Aquat Food Prod Technol 9:5–17

    Article  CAS  Google Scholar 

  9. Adamou R, Coly A, Douabalé SE, Tine A, Zamel ML, Seye MD (2005) Fluorimetric determination of histamine in halieutic products by using fluorescamine in micellar media. J Fluoresc 15:679–688

    Article  CAS  PubMed  Google Scholar 

  10. Pais GL, Meloni D, Mudadu AG, Crobu L, Pulina A, Chessa G (2022) Colorimetric analysis and determination of histamine in samples of yellowfin Tuna (Thunnus albacares) marketed in sardinia (Italy) by a combination of rapid screening methods and LC-MS/MS. Foods 11(5):639. https://doi.org/10.3390/foods11050639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kvasnička F, Kavková S, Honzlová A (2019) Electrophoretic determination of histamine. J Chromatogr A 1588:180–184

    Article  PubMed  Google Scholar 

  12. Guan W, Zhang C, Liu F, Liu M (2015) Chemiluminescence detection for microfluidic cloth-based analytical devices (μCADs). Biosens Bioelectron 72:114–120

    Article  CAS  PubMed  Google Scholar 

  13. Li H, Wang D, Liu C, Liu R, Zhang C (2017) Facile and sensitive chemiluminescence detection of H2O2 and glucose by a gravity/capillary flow and cloth-based low-cost platform. RSC Adv 68:43245–43254

    Article  Google Scholar 

  14. Guan W, Liu M, Zhang C (2016) Electrochemiluminescence detection in microfluidic cloth-based analytical devices. Biosens Bioelectron 75:247–253

    Article  CAS  PubMed  Google Scholar 

  15. Praoboon N, Senabut J, Thanomwat M, Tangkuaram T, Pookmanee P, Phaisansuthichol S, Sangsrichan S, Kuimalee S, Satienperakul S (2022) A cloth-based electrochemiluminescence sensor for determination of salbutamol residues in pork samples. Food Chemistry 386:132786. https://doi.org/10.1016/j.foodchem.2022.132786

    Article  CAS  PubMed  Google Scholar 

  16. Rasal AS, Yadav S, Yadav A, Kashale AA, Manjunatha ST, Altaee A, Chang J-Y (2021) Carbon quantum dots for energy applications: a review. ACS Appl Nano Mater 4:6515–6541

    Article  CAS  Google Scholar 

  17. Broomhead JA, Young CG, Hood P (2007) Tris(2,2′-bipyridine) ruthenium(II) dichloride hexahydrate inorganic syntheses. Wiley, New York

    Google Scholar 

  18. Xu Z-Q, Lan J-Y, Jin J-C, Dong P, Jiang F-L, Liu Y (2015) Highly photoluminescent nitrogen-doped carbon nanodots and their protective effects against oxidative stress on cells. ACS Appl Mater Interfaces 7(51):28346–28352

    Article  CAS  PubMed  Google Scholar 

  19. Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32:363–371

    Article  CAS  PubMed  Google Scholar 

  20. Singh A, Kaur A, Patra AK, Mahajan R (2018) A sustainable and green process for scouring of cotton fabrics using xylano-pectinolytic synergism: switching from noxious chemicals to eco-friendly catalysts. Biotech 8(4):184. https://doi.org/10.1007/s13205-018-1193-3

    Article  Google Scholar 

  21. Nilghaz A, Wicaksono DHB, Gustiono D, Majid FAA, Supriyanto E, Kadira MRA (2012) Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip 12:209–218

    Article  CAS  PubMed  Google Scholar 

  22. Fan YZ, Zhang Y, Li N, Liu SG, Liu T, Li NB, Luo HQ (2017) A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sensors Actuators B 240:949–955

    Article  CAS  Google Scholar 

  23. Rigodanza F, Burian M, Arcudi F, Đorđević L, Amenitsch H, Prato M (2021) Snapshots into carbon dots formation through a combined soectroscopic approach. Nat Commun 12(1):2640. https://doi.org/10.1038/s41467-021-22902-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vasimalai N, Vilas-Boas V, Gallo J, Cerqueira MF, Menéndez-Miranda M, Costa-Fernández JM, Diéguez L, Espiña B, Fernández-Argüelles MT (2018) Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition. Beilstein J Nanotechnol 9:530–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L (2014) One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 68:258–264

    Article  CAS  Google Scholar 

  26. Sheng M, Gao Y, Sun J, Gao F (2014) Carbon nanodots–chitosan composite film: a platform for protein immobilization, direct electrochemistry and bioelectrocatalysis. Biosens Bioelectron 58:351–358

    Article  CAS  PubMed  Google Scholar 

  27. Begum H, Ahmed MS, Jeon S (2017) New approach for porous chitosan–graphene matrix preparation through enhanced amidation for synergic detection of dopamine and uric acid. ACS Omega 2(6):3043–3054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Z, Zu Y (2008) Electrogenerated Chemiluminescence of the Tris(2,2′-bipyridine)ruthenium(II)/Tri-n-propylamine (TPrA) system: crucial role of the long lifetime of TPrA•+ cation radicals suggested by electrode surface effects. J Phys Chem C 112(42):16663–16667

    Article  CAS  Google Scholar 

  29. Noffsinger JB, Danielson ND (1987) Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2’-bipyridine)ruthenium(III). Anal Chem 59(6):865–868

    Article  CAS  Google Scholar 

  30. Heckenlaible N, Snyder S, Herchenbach P, Kava A, Henry CS, Gross EM (2022) Comparison of mobile phone and CCD cameras for electrochemiluminescent detection of biogenic amines. Sensors 22(18):7008. https://doi.org/10.3390/s22187008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miller JC, Miller JN (2010) Statistics for analytical chemistry, 6th edn. Ashford Colour Press Ltd, Gosport, UK

    Google Scholar 

  32. Munir AM, Mackeen MMM, Heng LY, Bradi KH (2021) Study of histamine detection using liquid chromatography and gas chromatography. ASM Sci J 16:(1–9). https://doi.org/10.32802/asmscj.2021.809

  33. Almeida C, Fernandes JO, Cunha SC (2012) A novel dispersive liquid–liquid microextraction (DLLME) gas chromatography-mass spectrometry (GC–MS) method for the determination of eighteen biogenic amines in beer. Food Control 25(1):380–388. https://doi.org/10.1016/j.foodcont.2011.10.052

    Article  CAS  Google Scholar 

  34. Zhang X, Liu Q, Wang Z-W, Xu H, An F-P, Huang Q, Song H-B, Wang Y-W (2020) D-penicillamine modified copper nanoparticles for fluorometric determination of histamine based on aggregation-induced emission. Microchim Acta 187(6):329. https://doi.org/10.1007/s00604-020-04271-1

    Article  CAS  Google Scholar 

  35. Pérez S, Bartrolí J, Fàbregas E (2013) Amperometric biosensor for the determination of histamine in fish samples. Food Chem 141(4):4066–4072. https://doi.org/10.1016/j.foodchem.2013.06.125

    Article  CAS  PubMed  Google Scholar 

  36. Xu L, Zhou J, Eremin S, Dias ACP, Zhang X (2020) Development of ELISA and chemiluminescence enzyme immunoassay for quantification of histamine in drug products and food samples. Anal Bioanal Chem 412(19):4739–4747. https://doi.org/10.1007/s00216-020-02730-5

    Article  CAS  PubMed  Google Scholar 

  37. Gao X, Gu X, Min Q, Wei Y, Tian C, Zhuang X, Luan F (2022) Encapsulating Ru(bpy)32+ in an infinite coordination polymer network: towards a solid-state electrochemiluminescence sensing platform for histamine to evaluate fish product quality. Food Chem 368:130852. https://doi.org/10.1016/j.foodchem.2021.130852

    Article  CAS  PubMed  Google Scholar 

  38. Praoboon N, Siriket S, Taokaenchan N, Tangkuaram T, Pookmanee P, Phaisansuthichol S, Kuimalee S, Satienperakul S (2022) Paper-based electrochemiluminescence device for the rapid estimation of trimethylamine in fish via the quenching effect of thioglycolic acid-capped cadmium selenide quantum dots. Food Chem 366:130590. https://doi.org/10.1016/j.foodchem.2021.130590

    Article  CAS  PubMed  Google Scholar 

  39. Tran QH, Nguyen T, Pham K (2020) Development of the high sensitivity and selectivity method for the determination of histamine in fish and fish sauce from Vietnam by UPLC-MS/MS. Int J Anal Chem, Article 2187646. https://doi.org/10.1155/2020/2187646

  40. Ali A, Waheed K, Hadaiyt A, Begum I, Hayat S (2016) Determination of histamine levels by LC-MS/MS in various fish species available in the local markets of Punjab, Pakistan. Int J Fish Aquatic Stud 4(6):128–132

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Science and Technology Service Centre, Faculty of Science, Maejo University, for providing valuable assistance with the nanostructure investigations.

Funding

J. Senabut gratefully acknowledges financial support from the Rajamangala University and Technology Lanna Funding (RMUTL) for this work. Additionally, S. Satienperakul would like to thank the National Research Council of Thailand (NRCT) for their very kind support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceptualization of this manuscript. Jirapatpong Senabut methodology and design, formal analysis and investigation, and writing—original draft. Nisachon Praoboon: formal analysis and investigation. Tanin Tangkuaram: data curation and visualization. Pusit Pookmanee and Supaporn Sangsrichan: methodology and supervision. Surasak Kuimalee: visualization. Sakchai Satienperakul: methodology and design, formal analysis and investigation, validation, funding acquisition, resources, writing—review and editing, and supervision.

Corresponding author

Correspondence to Sakchai Satienperakul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 193 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senabut, J., Praoboon, N., Tangkuaram, T. et al. Development of cloth-based microfluidic devices for rapid determination of histamine in fish and fishery products. Microchim Acta 190, 213 (2023). https://doi.org/10.1007/s00604-023-05792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05792-1

Keywords

Navigation