Skip to main content
Log in

Carbon dot and silver nanoparticle–based fluorescent probe for the determination of sulfite and bisulfite via inner-filter effect and competitive redox reactions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new sensitive fluorescent probe (CDs-AgNP/H2O2) for detecting sulfite and bisulfite (SO32− and HSO3) based on the inner-filter effect (IFE) between silver nanoparticles (AgNPs) and carbon dots (CDs) was developed. Because of the spectral overlap between the absorption of AgNPs and the excitation of CDs, the fluorescence of CDs can be quenched by AgNPs owing to the IFE. H2O2 weakens the IFE and restores the fluorescence due to the oxidation of AgNPs by H2O2. However, the existence of SO32−/HSO3 can quench the fluorescence again as a result of redox reaction between SO32−/HSO3 and H2O2. The results showed a broad linear range of 20–200 μM with a low limit of detection (3.02 μM) toward SO32−/HSO3. The combination of IFE and redox reaction led to improvement of the sensitivity and selectivity. The probe was implemented to measure SO32−/HSO3 in various agricultural products and foods with acceptable results (80.6 to 118.9% recovery).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buerman EC, Worobo RW, Padilla-Zakour OI (2021) High pressure processing of heat and pressure resistant fungi as affected by pH, water activity, sulftes, and dimethyl dicarbonate in a diluted apple juice concentrate. Food Control 120:107551. https://doi.org/10.1016/j.foodcont.2020.107551

    Article  CAS  Google Scholar 

  2. Wang S, Cao X, Gao T, Wang X, Zou H, Zeng W (2018) A ratiometric upconversion nanoprobe for fluorometric turn-ondetection of sulfite and bisulfite. Microchim Acta 290:101–106. https://doi.org/10.1016/j.foodchem.2019.03.121

    Article  CAS  Google Scholar 

  3. Zhang H, Xue S, Feng G (2016) A colorimetric and near-infrared fluorescent turn on probe for rapid detection of sulfite. Sens Actuators B Chem 231:752–758. https://doi.org/10.1016/j.snb.2016.03.069

    Article  CAS  Google Scholar 

  4. Zeng RF, Lan JS, Wu T, Liu L, Liu Y, Ho RJY, Ding Y, Zhang T (2020) A novel mitochondria-targetted near-infrared fluorescent probe for selective and colorimetric detection of sulfite and its application in vitro and vivo. Food Chem 318:126358. https://doi.org/10.1016/j.foodchem.2020.126358

    Article  CAS  PubMed  Google Scholar 

  5. Vally H, Misso NL, Madan V (2009) Clinical effects of sulphite additives. Clin Exp Allergy 39:1643–1651. https://doi.org/10.1111/j.1365-2222.2009.03362.x

    Article  CAS  PubMed  Google Scholar 

  6. Yang XF, Zhao ML, Wang G (2011) A rhodamine-based fluorescent probe selective for bisulfite anion in aqueous ethanol media. Sens Actuators B Chem 152:8–13. https://doi.org/10.1016/j.snb.2010.09.066

    Article  CAS  Google Scholar 

  7. Zhang LJ, Wang ZY, Cao XJ, Liu JT, Zhao BX (2016) An effective ICT-based and ratiometric fluorescent probe for sensing sulfite. Sens Actuators B Chem 236:741–748. https://doi.org/10.1016/j.snb.2016.06.055

    Article  CAS  Google Scholar 

  8. Mandrile L, Cagnasso I, BertaB L, Giovannozzi AM, Petrozziello M, Pellegrino F, Asproudi A, Durbiano F, Rossi AM Direct quantification of sulfur dioxide in wine by Surface Enhanced Raman Spectroscopy. Food Chem 327:127009. https://doi.org/10.1016/j.foodchem.2020.127009

  9. Masselter SM, Zemann AJ, Bonn GK (2015) Determination of inorganic anions in Kraft pulping liquors by capillary electrophoresis. J Sep Sci 19:131–136. https://doi.org/10.1002/jhrc.1240190303

    Article  Google Scholar 

  10. Carlos KS, Treblin M, de Jager LS (2019) Comparison and optimization of three commercial methods with an LC–MS/MS method for the determination of sulfites in food and beverages. Food Chem 286:537–540. https://doi.org/10.1016/j.foodchem.2019.02.042

    Article  CAS  PubMed  Google Scholar 

  11. Zhang K, Yao Y, Sun X, Wang Y, Tang L, Li X, Zhang J, Yan X, Li J (2022) Mitochondria-targeted fluorescent turn-on probe for rapid detection of bisulfite/sulfite in water and food samples. J Agric Food Chem 70:5159–5165. https://doi.org/10.1021/acs.jafc.2c00820

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Sun X, Zhou L, Tian L, Zhong K, Zhang J, Yan X, Tang L (2022) Novel colorimetric and NIR fluorescent probe for bisulfte/sulfte detection in food and water samples and living cells based on the PET mechanism. J Agric Food Chem 70:10899–10906. https://doi.org/10.1021/acs.jafc.2c04571

    Article  CAS  PubMed  Google Scholar 

  13. Giménez-Gómez P, Gutiérrez-Gapitán M, Ríos JM, Capdevila F, Puig-Pujol A, Jiménez-Jorquera C (2021) Microanalytical flow system for the simultaneous determination of acetic acid and free sulfur dioxide in wines. Food Chem 346:128891. https://doi.org/10.1016/j.foodchem.2020.128891

    Article  CAS  PubMed  Google Scholar 

  14. Yin C, Li X, Yue Y, Chao J, Zhang Y, Huo F (2017) A new fluorescent material and its application in sulfite and bisulfite bioimaging. Sens Actuators B Chem 246:615–622. https://doi.org/10.1016/j.snb.2017.02.127

    Article  CAS  Google Scholar 

  15. Li K, Li LL, Zhou Q, Yu KK, Kim JS, Yu XQ (2019) Reaction-based fluorescent probes for SO2 derivatives and their biological applications. Coord Chem Rev 388:310–333. https://doi.org/10.1016/j.ccr.2019.03.001

    Article  CAS  Google Scholar 

  16. Feng H, Liu J, Qaitoon A, Meng Q, Sultanbawa Y, Zhang Z, Xu ZP, Zhang R (2021) Responsive small-molecule luminescence probes for sulfite/bisulfite detection in food samples. TrAC Trends Anal Chem 136:116199. https://doi.org/10.1016/j.trac.2021.116199

    Article  CAS  Google Scholar 

  17. Han S, Zhang H, Yue X, Wang J, Yang L, Wang B, Song X (2021) A ratiometric, fast-responsive, and single-wavelength excited fluorescent probe for the discrimination of Cys and Hcy. Anal Chem 93:10934–10939. https://doi.org/10.1021/acs.analchem.1c01750

    Article  CAS  PubMed  Google Scholar 

  18. Zhong K, Hu X, Zhou S, Liu X, Gao X, Tang L, Yan X (2021) Mitochondria-targeted red-emission fluorescent probe for ultrafast detection of H2S in food and its bioimaging application. J Agric Food Chem 69:4628–4634. https://doi.org/10.1021/acs.jafc.1c00862

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Su R, Li H, Guo J, Hildebrandt H, Sun C (2022) Fluorescent aptasensors: design strategies and applications in analyzing chemical contamination of food. Anal Chem 94:193–224. https://doi.org/10.1021/acs.analchem.1c04294

    Article  CAS  PubMed  Google Scholar 

  20. Jiménez-López J, Llorent-Martínez EJ, Ortega-Barrales P, Ruiz-Medina A (2020) Graphene quantum dots-silver nanoparticles as a novel sensitive and selective luminescence probe for the detection of glyphosate in food samples. Talanta 207:120344. https://doi.org/10.1016/j.talanta.2019.120344

    Article  CAS  PubMed  Google Scholar 

  21. Meng ZQ, Qin GH, Zhang B, Bai JL (2004) DNA damaging effects of sulfur dioxide derivatives in cells from various organs of mice. Mutagenesis 19:465–468. https://doi.org/10.1093/mutage/geh058

    Article  CAS  PubMed  Google Scholar 

  22. Hsu PC, Chang HT (2012) Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun 48:3984–3986. https://doi.org/10.1039/c2cc30188a

    Article  CAS  Google Scholar 

  23. Fan X, Fan Z Determination of thiourea by on–off fluorescence using nitrogen-doped graphene quantum dots. Anal Lett 52:2028–2040. https://doi.org/10.1080/00032719.2019.1590844

  24. Zheng M, Wang C, Wang Y, Wei W, Ma S, Sun X, He J (2018) Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim. Talanta 185:309–315. https://doi.org/10.1016/j.talanta.2018.03.066

    Article  CAS  PubMed  Google Scholar 

  25. Yuan P, Walt DR (1987) Calculation for fluorescence modulation by absorbing species and its application to measurements using optical fibers. Anal Chem 59:2391–2394. https://doi.org/10.1021/ac00146a015

    Article  CAS  Google Scholar 

  26. Sheng E, Lu Y, Tan Y, XiaoY LZ, Dai Z (2020) Ratiometric fluorescent quantum dot-based biosensor for chlorothalonil detection via an inner-filter effect. Anal Chem 92:4364–4370. https://doi.org/10.1021/acs.analchem.9b05199

    Article  CAS  PubMed  Google Scholar 

  27. Zhang M, Cao X, Li H, Guan F, Guo J, Shen F, Luo Y, Sun C, Zhang L (2012) Sensitive fluorescent detection of melamine in raw milk based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. Food Chem 135:1894–1900. https://doi.org/10.1016/j.foodchem.2012.06.070

    Article  CAS  PubMed  Google Scholar 

  28. Liu SG, Mo S, Han L, Li N, Fan YZ, Li NB, Luo HQ (2019) Oxidation etching induced dual-signal response of carbon dots/silver nanoparticles system for ratiometric optical sensing of H2O2 and H2O2-related bioanalysis. Anal Chim Acta 1055:81–89. https://doi.org/10.1016/j.aca.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  29. Pei H, Zhu S, Yang M, Kong R, Zheng Y, Qu F (2015) Graphene oxide quantum dots@silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron 74:909–914. https://doi.org/10.1016/j.bios.2015.07.056

    Article  CAS  PubMed  Google Scholar 

  30. Kong R, Yang A, Wang Q, Wang Y, Ma L, Qu F (2017) Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@silver core-shell nanocomposites. Microchim Acta 185:63. https://doi.org/10.1007/s00604-017-2614-4

    Article  CAS  Google Scholar 

  31. Liang H, Liu H, Tian B, Ma R, Wang Y (2020) Carbon quantum Dot@Silver nanocomposite–based fluorescent imaging of intracellular superoxide anion. 187:484. https://doi.org/10.1007/s00604-020-04359-8

  32. Yang L, Liu M, Sheng K, Li X, Du J, Ning Y, Wang X, Li J, Zhang Y, Wu S (2019) Design and synthesis of a novel colorimetric fluorescent probe for selective detection of sulfur dioxide in SH-SY5Y neuroblastoma cells and its application in traditional Chinese medicines. New J Chem 43:4188–4195. https://doi.org/10.1039/C8NJ06326E

    Article  CAS  Google Scholar 

  33. Li D, Tian X, Li Z, Zhang J, Yang X (2019) Preparation of a near-infrared fluorescent probe based on IR-780 for highly selective and sensitive detection of bisulfite−sulfite in food, living cells, and mice. J Agric Food Chem 67:3062–3067. https://doi.org/10.1021/acs.jafc.9b00822

    Article  CAS  PubMed  Google Scholar 

  34. Sun Q, Zhang W-B, Qian J-H (2017) A ratiometric fluorescence probe for selective detection of sulfite and its application in realistic samples. Talanta 162:107–113. https://doi.org/10.1016/j.talanta.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Sun X-F, Zhou L-L, Tian L, Zhang J-L, Yan X-M, Tang L-J (2022) Novel colorimetric and NIR fluorescent probe for bisulfite/sulfite detection in food and water samples and living cells based on the PET Mechanism. J Agric Food Chem 70(35):10899–10906. https://doi.org/10.1021/acs.jafc.2c04571

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32001783), the Science and Technology Program of Shaanxi Province (2019JQ-484), and the Scientific Research Program Funded by Shaanxi Provincial Education Department (20JK0540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbo Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 975 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wang, Y. & Wang, S. Carbon dot and silver nanoparticle–based fluorescent probe for the determination of sulfite and bisulfite via inner-filter effect and competitive redox reactions. Microchim Acta 190, 190 (2023). https://doi.org/10.1007/s00604-023-05782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05782-3

Keywords

Navigation