Skip to main content

Advertisement

Log in

Synthesis of single-walled carbon nanotubes functionalized with platinum nanoparticles to sense breast cancer cells in 4T1 model to X-ray radiation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In recent years, various types of radiosensitizers have been developed to address the challenges of cancer radiotherapy. Here, platinum-functionalized oxygenated single-walled carbon nanotubes (O-SWCNTs-Pt) coated with folic acid (FA) and bovine serum albumin (BSA) (O-SWCNTs-Pt-BSA-FA) were synthesized, characterized, and used as radiosensitizers to improve the therapeutic efficacy of X-rays in a mouse model of breast cancer (4T1) in vitro. The nanosensitizer was characterized by different techniques, such as transmission electron microscopy (TEM), selected area electron diffraction (SAED), dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), ultraviolet–visible (UV-visible), and Fourier transform infrared (FTIR) spectrometry. The evaluation of cell viability with nanocarriers O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA is reported at the concentrations of 10, 30, and 90 μg/mL by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in the presence and absence of X-rays at 4 and 8 Gy. The results showed that administration of O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, Pt-BSA-FA, and O-SWCNTs-Pt-BSA-FA + 8 Gy at a concentration of 90 μg/mL reduced survival by 75.31, 65.32, 67.35, and 60.35%, respectively. O-SWCNTs-Pt-BSA-FA has a hydrodynamic size of 88.57 nm and a surface charge of −29 mV, which indicates special stability. Compared with O-SWCNTs-BSA, O-SWCNTs-Pt-BSA, and Pt-BSA-FA, it has very strong cell-killing activity in the 4T1 cell line. It is also noteworthy that SWCNTs can act as a controlled release and delivery system for PtNPs due to their unique properties and easy penetration into biological membranes. As a result, the  new nanosensitizer may play a role in cancer treatment in conjunction with radiotherapy technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fan W, Shen B, Bu W, Chen F, Zhao K, Zhang S et al (2013) Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging. J Am Chem Soc 135(17):6494–6503. https://doi.org/10.1021/ja312225b

    Article  CAS  PubMed  Google Scholar 

  2. Liu Q, Kim YJ, Im GB, Zhu J, Wu Y, Liu Y et al (2021) Inorganic nanoparticles applied as functional therapeutics. Adv Funct Mater 31(12):2008171. https://doi.org/10.1002/adfm.202008171

    Article  CAS  Google Scholar 

  3. Yu S, Cui Y, Guo X, Chen S, Sun H, Wang L et al (2019) Biocompatible bovine serum albumin stabilized platinum nanoparticles for the oxidation of morin. New J Chem 43(22):8774–8780. https://doi.org/10.1039/C9NJ00887J

    Article  CAS  Google Scholar 

  4. Daneshvar F, Salehi F, Karimi M, Vais RD, Mosleh-Shirazi M, Sattarahmady N (2020) Combined X-ray radiotherapy and laser photothermal therapy of melanoma cancer cells using dual-sensitization of platinum nanoparticles. J Photochem Photobiol B: Biol 203:111737. https://doi.org/10.1016/j.jphotobiol.2019.111737

    Article  CAS  Google Scholar 

  5. KA MA, Ab Rashid R, Lazim RM, Dollah N, Razak KA, Rahman W (2018) Evaluation of radiosensitization effects by platinum nanodendrites for 6 MV photon beam radiotherapy. Radiat Phys Chem 150:40-45. https://doi.org/10.1016/j.radphyschem.2018.04.018

  6. Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C et al (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med 5(2):136–142. https://doi.org/10.1016/j.nano.2009.01.014

    Article  CAS  Google Scholar 

  7. Tang J, Jiang X, Wang L, Zhang H, Hu Z, Liu Y et al (2014) Au@ Pt nanostructures: a novel photothermal conversion agent for cancer therapy. Nanoscale 6(7):3670–3678. https://doi.org/10.1039/C3NR06841B

    Article  CAS  PubMed  Google Scholar 

  8. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136. https://doi.org/10.1021/cr050569o

    Article  CAS  PubMed  Google Scholar 

  9. Li H, Sun X, Li Y, Li B, Liang C, Wang H (2019) Preparation and properties of carbon nanotube (Fe)/hydroxyapatite composite as magnetic targeted drug delivery carrier. Mater Sci Eng: C 97:222–229. https://doi.org/10.1016/j.msec.2018.11.042

    Article  CAS  Google Scholar 

  10. Sun Y-P, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35(12):1096–1104. https://doi.org/10.1021/ar010160v

    Article  CAS  PubMed  Google Scholar 

  11. Maleki R, Afrouzi HH, Hosseini M, Toghraie D, Rostami S (2020) Molecular dynamics simulation of doxorubicin loading with N-isopropyl acrylamide carbon nanotube in a drug delivery system. Comput Methods Prog Biomed 184:105303. https://doi.org/10.1016/j.cmpb.2019.105303

    Article  Google Scholar 

  12. Al Faraj A, Shaik AS, Halwani R, Alfuraih A (2016) Magnetic targeting and delivery of drug-loaded SWCNTs theranostic nanoprobes to lung metastasis in breast cancer animal model: noninvasive monitoring using magnetic resonance imaging. Mol Imag Biol 18:315–324. https://doi.org/10.1007/s11307-015-0902-0

    Article  CAS  Google Scholar 

  13. Gong H, Peng R, Liu Z (2013) Carbon nanotubes for biomedical imaging: the recent advances. Adv Drug Del Rev 65(15):1951–1963. https://doi.org/10.1016/j.addr.2013.10.002

    Article  CAS  Google Scholar 

  14. Liu L, Hu F, Wang H, Wu X, Eltahan AS, Stanford S et al (2019) Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for rheumatoid arthritis therapy. Acs Nano 13(5):5036–5048. https://doi.org/10.1021/acsnano.9b01710

    Article  CAS  PubMed  Google Scholar 

  15. Nikitin AA, Yurenya AY, Gabbasov RR, Cherepanov VM, Polikarpov MA, Chuev MA et al (2021) Effects of macromolecular crowding on nanoparticle diffusion: new insights from Mössbauer spectroscopy. J Phys Chem Lett 12(29):6804–6811. https://doi.org/10.1021/acs.jpclett.1c01984

    Article  CAS  PubMed  Google Scholar 

  16. Monsef R, Salavati-Niasari M (2023) Architecturally robust tubular nano-clay grafted Li0. 9Ni0. 5Co0. 5O2-x/LiFeO2 nanocomposites: new implications for electrochemical hydrogen storage. Fuel 332:126015. https://doi.org/10.1016/j.fuel.2022.126015

    Article  CAS  Google Scholar 

  17. Li Y, Yun K-H, Lee H, Goh S-H, Suh Y-G, Choi Y (2019) Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials 197:12–19. https://doi.org/10.1016/j.biomaterials.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  18. Klein S, Otto J, Harreiß C, Distel LV, Leistner A, Neuhuber W et al (2021) Pt–Fe3O4, Pd–Fe3O4, and Au–Fe3O4 nanoheterodimers and their efficacy as radiosensitizers in cancer therapy. ACS Appl Bio Mater 4(11):7879–7892. https://doi.org/10.1021/acsabm.1c00803

    Article  CAS  PubMed  Google Scholar 

  19. Rashidzadeh H, Seidi F, Ghaffarlou M, Salehiabar M, Charmi J, Yaray K et al (2023) Preparation of alginate coated Pt nanoparticle for radiosensitization of breast cancer tumor. Int J Biol Macromol 14:123273. https://doi.org/10.1016/j.ijbiomac.2023.123273

    Article  CAS  Google Scholar 

  20. Monsef R, Salavati-Niasari M (2022) Electrochemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychloroquine in biological samples. J Colloid Interface Sci 613:1–14. https://doi.org/10.1016/j.jcis.2022.01.039

    Article  CAS  PubMed  Google Scholar 

  21. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G et al (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076. https://doi.org/10.1002/smll.200900466

    Article  CAS  PubMed  Google Scholar 

  22. Parng C (2005) In vivo zebrafish assays for toxicity testing. Curr Opin Drug Discov Devel 8(1):100–106. http://europepmc.org/abstract/MED/15679177

    CAS  PubMed  Google Scholar 

  23. Aghaei A, Shaterian M, Hassan H, Farokhi A (2022) Single-walled carbon nanotubes: synthesis and quantitative purification evaluation by acid/base treatment for high carbon impurity elimination. Chemical Papers 77:249–258. https://doi.org/10.1007/s11696-022-02478-5

    Article  CAS  Google Scholar 

  24. Aghaei A, Shaterian M, Monfared HH, Farokhi A (2022) Designing a strategy for fabrication of single-walled carbon nanotube via CH4/N2 gas by the chemical vapor deposition method. Adv Powder Technol 33(3):103500. https://doi.org/10.1016/j.apt.2022.103500

    Article  CAS  Google Scholar 

  25. Hao Y, Chen S, Wang H, Chen R, Sun P, Chen T (2020) Platinum nanoparticles supported on hierarchically porous aluminosilicate nanospheres for low-temperature catalytic combustion of volatile organic compounds. ACS Appl Bio Mater 3(8):8472–8482. https://doi.org/10.1021/acsanm.0c02001

    Article  CAS  Google Scholar 

  26. Holišová V, Urban M, Konvičková Z, Kolenčík M, Mančík P, Slabotinský J et al (2021) Colloidal stability of phytosynthesised gold nanoparticles and their catalytic effects for nerve agent degradation. Sci Rep 11(1):1–9. https://doi.org/10.1038/s41598-021-83460-1

    Article  CAS  Google Scholar 

  27. Zhang R, Huang J, Chen K, Boussouar I, Chen X, Fan Y et al (2021) Highly efficient ionic gating of solid-state nanosensors by the reversible interaction between pillar [6] arene-AuNPs and azobenzene. Anal Chem 93(6):3280–3286. https://doi.org/10.1021/acs.analchem.0c05241

    Article  CAS  PubMed  Google Scholar 

  28. Abramova AM, Kokorina AA, Sindeeva OA, Jolibois F, Puech P, Sukhorukov GB et al (2020) Molecular nature of breakdown of the folic acid under hydrothermal treatment: a combined experimental and DFT study. Sci Rep 10(1):19668. https://doi.org/10.1038/s41598-020-76311-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Winjobi O, Zhang Z, Liang C, Li W (2010) Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochim Acta 55(13):4217–4221. https://doi.org/10.1016/j.electacta.2010.02.062

    Article  CAS  Google Scholar 

  30. Nagababu P, Ahmed SAM, Prabhu YT, Kularkar A, Bhowmick S, Rayalu SS (2021) Synthesis of Ni2P/CdS and Pt/TiO2 nanocomposite for photoreduction of CO2 into methanol. Sci Rep 11(1):8084. https://doi.org/10.1038/s41598-021-87625-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghiyasiyan-Arani M, Salavati-Niasari M, Naseh S (2017) Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization. Ultrason Sonochem 39:494–503. https://doi.org/10.1016/j.ultsonch.2017.05.025

    Article  CAS  PubMed  Google Scholar 

  32. Georgakilas V, Tzitzios V, Gournis D, Petridis D (2005) Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater 17(7):1613–1617. https://doi.org/10.1021/cm0483590

    Article  CAS  Google Scholar 

  33. Karami K, Jamshidian N, Hajiaghasi A, Amirghofran Z (2020) BSA nanoparticles as controlled release carriers for isophethalaldoxime palladacycle complex; synthesis, characterization, in vitro evaluation, cytotoxicity and release kinetics analysis. New J Chem 44(11):4394–4405. https://doi.org/10.1039/C9NJ05847H

    Article  CAS  Google Scholar 

  34. Ding L, Wang R, Hu Y, Xu F, Zhang N, Cao X et al (2020) Folic acid-modified Laponite®-stabilized Fe3O4 nanoparticles for targeted T2-weighted MR imaging of tumor. Applied Clay Science 186:105447. https://doi.org/10.1016/j.clay.2020.105447

    Article  CAS  Google Scholar 

  35. Kumar CS, Thangam R, Mary SA, Kannan PR, Arun G, Madhan B (2020) Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr Polym 231:115682. https://doi.org/10.1016/j.carbpol.2019.115682

    Article  CAS  Google Scholar 

  36. Salavati-Niasari M, Shaterian M, Ganjali MR, Norouzi P (2007) Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn (II), Co (II), Ni (II) and Cu (II) complexes of N, N′-bis (salicylidene) phenylene-1, 3-diamine) nanocomposite materials (HGNM). J Mol Catal A: Chem 261(2):147–155. https://doi.org/10.1016/j.molcata.2006.07.048

    Article  CAS  Google Scholar 

  37. Salavati-Niasari M, Davar F, Fereshteh Z (2009) Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor. Chem Eng J 146(3):498–502. https://doi.org/10.1016/j.cej.2008.09.042

    Article  CAS  Google Scholar 

  38. Castan A, Forel S, Fossard F, Defillet J, Ghedjatti A, Levshov D et al (2021) Assessing the reliability of the Raman peak counting method for the characterization of SWCNT diameter distributions: a cross characterization with TEM. Carbon 171:968–979. https://doi.org/10.1016/j.carbon.2020.09.012

    Article  CAS  Google Scholar 

  39. Karimi-Maleh H, Alizadeh M, Orooji Y, Karimi F, Baghayeri M, Rouhi J et al (2021) Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation. Ind Eng Chem Res 60(2):816–823. https://doi.org/10.1021/acs.iecr.0c04698

    Article  CAS  Google Scholar 

  40. Ruiz-Camacho B, Medina-Ramírez A, Fuentes-Ramírez R, Navarro R, Goméz CM, Pérez-Larios A (2022) Pt and Pt–Ag nanoparticles supported on carbon nanotubes (CNT) for oxygen reduction reaction in alkaline medium. Int J Hydrogen Energy 47(70):30147–30159. https://doi.org/10.1016/j.ijhydene.2022.03.190

    Article  CAS  Google Scholar 

  41. Azcoaga Chort MF, Nagel PA, Veizaga NS, Rodríguez VI, de Miguel SR (2022) Effect of Sn content on Pt/CNT electrocatalysts for direct ethanol fuel cell application. Can J Chem Eng 100(8):1848–1857. https://doi.org/10.1002/cjce.24252

    Article  CAS  Google Scholar 

  42. Samanta R, Mishra R, Barman S (2022) Interface-engineered porous Pt–PdO nanostructures for highly efficient hydrogen evolution and oxidation reactions in base and acid. ACS Sustain Chem Eng 10(11):3704–3715. https://doi.org/10.1021/acssuschemeng.2c00218

    Article  CAS  Google Scholar 

  43. Singh V, Kesharwani P (2021) Dendrimer as a promising nanocarrier for the delivery of doxorubicin as an anticancer therapeutics. J Biomater Sci Polym Ed 32(14):1882–1909. https://doi.org/10.1080/09205063.2021.1938859

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors thank the Zanjan University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Afsoon Aghaei or Maryam Shaterian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

Supplementary Figures

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaei, A., Shaterian, M., Danafar, H. et al. Synthesis of single-walled carbon nanotubes functionalized with platinum nanoparticles to sense breast cancer cells in 4T1 model to X-ray radiation. Microchim Acta 190, 184 (2023). https://doi.org/10.1007/s00604-023-05761-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05761-8

Keywords

Navigation