Skip to main content

Advertisement

Log in

A SERS/fluorescence dual-mode immuno-nanoprobe for investigating two anti-diabetic drugs on EGFR expressions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A surface-enhanced Raman scattering (SERS)/fluorescence dual-mode nanoprobe was proposed to assess anti-diabetic drug actions from the expression level of the epidermal growth factor receptor (EGFR), which is a significant biomarker of breast cancers. The nanoprobe has a raspberry shape, prepared by coating a dye-doped silica nanosphere with a mass of SERS tags, which gives high gains in fluorescence imaging and SERS measurement. The in situ detection of EGFR on the cell membrane surfaces after drug actions was achieved by using this nanoprobe, and the detection results agree with the enzyme-linked immunosorbent assay (ELISA) kit. Our study suggests that rosiglitazone hydrochloride (RH) may be a potential drug for diabetic patients with breast cancer, while the anti-cancer effect of metformin hydrochloride (MH) is debatable since MH slightly promotes the EGFR expression of MCF-7 cells in this study. This sensing platform endows more feasibility for highly sensitive and accurate feedback of pesticide effects at the membrane protein level.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wellington K (2015) Rosiglitazone/metformin. Drugs 65:1581–1592. https://doi.org/10.2165/00003495-200565110-00013

    Article  Google Scholar 

  2. Lau YI, Du X, Rayannavar V, Hopkins B, Shaw J, Bessler E, Thomas T, Pires MM, Keniry M, Parsons RE, Cremers S, Szabolcs M, Maurer MA (2014) Metformin and erlotinib synergize to inhibit basal breast cancer. Oncotarget 5:10503–10517. https://doi.org/10.18632/oncotarget.2391

    Article  PubMed  PubMed Central  Google Scholar 

  3. Han SW, Roman J (2006) Rosiglitazone suppresses human lung carcinoma cell growth through PPARγ-dependent and PPARγ-independent signal pathways. Mol Cancer Ther 5:430–437. https://doi.org/10.1158/1535-7163.mct-05-0347

    Article  CAS  PubMed  Google Scholar 

  4. Zhang W, Wu N, Li Z, Wang L, Jin J, Zha XL (2006) PPAR gamma activator rosiglitazone inhibits cell migration via upregulation of PTEN in human hepatocarcinoma cell line BEL-7404. Cancer Biol Ther 5:1008–1014. https://doi.org/10.4161/cbt.5.8.2887

    Article  CAS  PubMed  Google Scholar 

  5. Bonofiglio D, Cione E, Qi HY, Pingitore A, Perri M, Catalano S, Vizza D, Panno ML, Genchi G, Fuqua SAW, Andò S (2009) Combined low doses of PPARγ and RXR ligands trigger an intrinsic apoptotic pathway in human breast cancer cells. Am J Pathol 175:1270–1280. https://doi.org/10.2353/ajpath.2009.081078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Masuda H, Zhang DW, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT (2012) Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 136:331–345. https://doi.org/10.1007/s10549-012-2289-9

    Article  CAS  PubMed  Google Scholar 

  7. Wan Y, Tamuly D, Allen PB, Kim YT, Bachoo R, Ellington AD, Iqbal SM (2013) Proliferation and migration of tumor cells in tapered channels. Biomed Microdevices 15:635–643. https://doi.org/10.1007/s10544-012-9721-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang HT, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI (2007) ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest 117:2051–2058. https://doi.org/10.1172/jci32278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhargava R, Gerald WL, Li AR, Pan Q, Lal P, Ladanyi M, Chen BY (2005) EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod Pathol 18:1027–1033. https://doi.org/10.1038/modpathol.3800438

    Article  CAS  PubMed  Google Scholar 

  10. Muller S, Su L, Tighiouart M, Saba N, Zhang HZ, Shin DM, Chen ZG (2008) Distinctive E-cadherin and epidermal growth factor receptor expression in metastatic and nonmetastatic head and neck squamous cell carcinoma. Cancer 113:97–107. https://doi.org/10.1002/cncr.23557

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Yang XH, Hu F, Li CH, Xu JL, Nie W, Shen YC, Lou YQ, Han BH, Zhong H, Zhang XY (2020) Expression level of Wnt5a was related to the therapeutic effects of first-generation EGFR-TKIs. OncoTargets Ther 13:5387–5394. https://doi.org/10.2147/ott.s250024

    Article  CAS  Google Scholar 

  12. Cong LL, Geng YJ, Tian Y, Huo ZP, Huang DS, Liang CY, Xu WQ, Wang YL, Xu SP (2020) Plasmon-enhanced four-wave mixing imaging for microdroplet-based single-cell analysis. Anal Chem 92:9459–9464. https://doi.org/10.1021/acs.analchem.0c00816

    Article  CAS  PubMed  Google Scholar 

  13. Tian Y, Xu WQ, Ma KS, Cong LL, Shen YT, Han XX, Liang CY, Liang LJ, Qi GH, Jin YD, Xu SP (2021) Label-free analysis of cell membrane proteins via evanescent field excited surface-enhanced Raman scattering. J Phys Chem Lett 12:10720–10727. https://doi.org/10.1021/acs.jpclett.1c02966

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Guo T, Lu Q, Yan XL, Zhong DX, Zhang ZP, Ni YF, Han Y, Cui DX, Li XF, Huang LJ (2015) Sea-urchin-like Au nanocluster with surface-enhanced Raman scattering in detecting epidermal growth factor receptor (EGFR) mutation status of malignant pleural effusion. ACS Appl Mater Interfaces 7:359–369. https://doi.org/10.1021/am508122e

    Article  CAS  PubMed  Google Scholar 

  15. Narayanan N, Karunakaran V, Paul W, Venugopal K, Sujathan K, Maiti KK (2015) Aggregation induced Raman scattering of squaraine dye: implementation in diagnosis of cervical cancer dysplasia by SERS imaging. Biosens Bioelectron 70:145–152. https://doi.org/10.1016/j.bios.2015.03.029

    Article  CAS  PubMed  Google Scholar 

  16. Li LH, Liao ML, Chen YF, Shan BB, Li M (2019) Surface-enhanced Raman spectroscopy (SERS) nanoprobes for ratiometric detection of cancer cells. J Mater Chem B 7:815–822. https://doi.org/10.1039/c8tb02828a

    Article  CAS  PubMed  Google Scholar 

  17. Zhang DD, Ma F, Zhang QY, Zhang CY (2017) Highly sensitive detection of epidermal growth factor receptor in lung cancer cells by aptamer-based target-/probe-mediated cyclic signal amplification. Chem Commun 53:11496–11499. https://doi.org/10.1039/c7cc06823a

    Article  CAS  Google Scholar 

  18. Yan X, Song YP, Liu JM, Zhou N, Zhang CL, He LH, Zhang ZH, Liu ZY (2019) Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosens Bioelectron 126:734–742. https://doi.org/10.1016/j.bios.2018.11.047

    Article  CAS  PubMed  Google Scholar 

  19. Bakshi S, Mehta S, Kumeria T, Shiddiky MJA, Popat A, Choudhury S, Bose S, Nayak R (2021) Rapid fabrication of homogeneously distributed hyper-branched gold nanostructured electrode based electrochemical immunosensor for detection of protein biomarkers. Sensor Actuat B-Chem 326:128803. https://doi.org/10.1016/j.snb.2020.128803

    Article  CAS  Google Scholar 

  20. Chen M, Zhang L, Gao MX, Zhang XM (2017) High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite. Talanta 172:176–181. https://doi.org/10.1016/j.talanta.2017.05.033

    Article  CAS  PubMed  Google Scholar 

  21. Ou YC, Webb JA, O'Brien CM, Pence IJ, Lin EC, Paul EP, Cole D, Ou SH, Lapierre-Landry M, DeLapp RC, Lippmann ES, Mahadevan-Jansen A, Bardhan R (2018) Diagnosis of immunomarkers in vivo via multiplexed surface enhanced Raman spectroscopy with gold nanostars. Nanoscale 10:13092–13105. https://doi.org/10.1039/c8nr01478g

    Article  CAS  PubMed  Google Scholar 

  22. Pfeiffer P, Nexø E, Bentzen SM, Clausen PP, Andersen K, Rose C (1998) Enzyme-linked immunosorbent assay of epidermal growth factor receptor in lung cancer: comparisons with immunohistochemistry, clinicopathological features and prognosis. Br J Cancer 78:96–99. https://doi.org/10.1038/bjc.1998.448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pham XH, Lee M, Shim S, Jeong S, Kim HM, Hahm E, Lee SH, Lee YS, Jeong DH, Jun BH (2017) Highly sensitive and reliable SERS probes based on nanogap control of a Au-Ag alloy on silica nanoparticles. RSC Adv 7:7015–7021. https://doi.org/10.1039/c6ra26213a

    Article  CAS  Google Scholar 

  24. Zhou R, Zhou HY, Xiong B, He Y, Yeung ES (2012) Pericellular matrix enhances retention and cellular uptake of nanoparticles. J Am Chem Soc 134:13404–13409. https://doi.org/10.1021/ja304119w

    Article  CAS  PubMed  Google Scholar 

  25. Xin Y, Gao HJ (2017) Kinetics of receptor-mediated endocytosis of elastic nanoparticles. Nanoscale 9:454–463. https://doi.org/10.1039/c6nr07179a

    Article  Google Scholar 

  26. Xu HJ, Gao J, Cai MJ, Chen JL, Zhang QG, Li HR, Wang HD (2020) Structural mechanism analysis of orderly and efficient vesicle transport by high-resolution imaging and fluorescence tracking. Anal Chem 92:6555–6563. https://doi.org/10.1021/acs.analchem.0c00197

    Article  CAS  PubMed  Google Scholar 

  27. Changavi AA, Shashikala A, Ramji AS (2015) Epidermal growth factor receptor expression in triple negative and nontriple negative breast carcinomas. J Lab Physicians 7:79–83. https://doi.org/10.4103/0974-2727.163129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fenn K, Maurer M, Lee SM, Crew KD, Trivedi MS, Accordino MK, Hershman DL, Kalinsky K (2020) Phase 1 study of erlotinib and metformin in metastatic triple-negative breast cancer. Clin Breast Cancer 20:80–86. https://doi.org/10.1016/j.clbc.2019.08.004

    Article  CAS  PubMed  Google Scholar 

  29. Grünwald V, Hidalgo M (2003) Developing inhibitors of the epidermal growth factor receptor for cancer treatment. J Natl Cancer Inst 95:851–867. https://doi.org/10.1093/jnci/95.12.851

    Article  PubMed  Google Scholar 

  30. Kim H, Trinh BT, Kim KH, Moon J, Kang H, Jo K, Akter R, Jeong J, Lim E, Jung J, Choi H, Park HG, Kwon OS, Yoon I, Kang T (2021) Au@ZIF-8 SERS paper for food spoilage detection. Biosens Bioelectron 179:113063. https://doi.org/10.1016/j.bios.2021.113063

    Article  CAS  PubMed  Google Scholar 

  31. Harris RC, Chung E, Coffey RJ (2003) EGF receptor ligands. Exp Cell Res 284:2–13. https://doi.org/10.1016/S0014-4827(02)00105-2

    Article  CAS  PubMed  Google Scholar 

  32. Singh AB, Harris RC (2005) Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signalling 17:1183–1193. https://doi.org/10.1016/j.cellsig.2005.03.026

    Article  CAS  PubMed  Google Scholar 

  33. Bonofiglio D, Cione E, Qi HY, Pingitore A, Perri M, Catalano S, Vizza D, Panno ML, Genchi G, Fuqua SAW, Andò S (2009) Combined low doses of PPARγ and RXR ligands trigger an intrinsic apoptotic pathway in human breast cancer Cells. Am J Pathol 175:1270–1280. https://doi.org/10.2353/ajpath.2009.081078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21873039, 22173035, and 21827805), Technology Development Program of Jilin Province (20220101046JC), Department of Finance of Jilin Province (2021CSZ14), Opening Project of State Key Laboratory of Applied Optics (SKLAO2021001A14), and Interdisciplinary Integration Innovation Project of Jilin University (JLUXKJC2020106).

Author information

Authors and Affiliations

Authors

Contributions

Yuqi Cheng: conceptualization, data curation, formal analysis, writing—original draft. Lili Cong: conceptualization, writing—review and editing. Xiaozhang Qu: conceptualization, methodology, investigation. Junyi Zhao: formal analysis. Jiamin Chen: investigation. Ping Li: funding acquisition. Wei Shi: methodology. Weiqing Xu: conceptualization, supervision, funding acquisition, project administration. Shuping Xu: conceptualization, writing—review and editing, supervision, funding acquisition, project administration.

Corresponding authors

Correspondence to Ping Li or Shuping Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary materials

Supplementary materials 1:

Figure S1 UV-vis spectra of FITC and F-SiO2. Figure S2 The average particles diameter of F-SiO2 (n=150). Figure S3 TEM image of F-SiO2-Au/Ag. Scale bar: 200 nm. Figure S4 Optimization of the concentration of AgNO3 for preparing F-SiO2-Au/Ag NPs and their SERS activity. SERS spectra (a) and the response histogram (b) at 1073 cm-1 of MBA modified F-SiO2-Au/Ag nanoprobes obtained by different concentrations of AgNO3 (200, 300, 400, and 500 μM, respectively). Figure S5 Confocal laser scanning microscope (CLSM) images of F-SiO2-Au/Ag nanoprobes obtained by different concentrations of AgNO3 200, 300, 400, and 500 μM (a-d), respectively. Scale bar: 200 μm. Figure S6 Fluorescence images (a) and Raman spectra (b) of MCF-7 cells incubated with F-SiO2-Au/Ag-MBA (0.06 mg/mL). Scale bar: 200 μm. Figure S7 CLSM images of MCF-7 cells treated with/without MH (20 and 40 mM) and RH (100 μM). Scale bar: 50 μm. Figure S8 (a) CLSM images of MCF-7 cells treated with MH (40 mM). Scale bar: 50 μm. (b) t-Test analysis of the mean intensity of EGFR from each cell. 210 cells are processed with ImageJ software. The error bars represent the standard deviations of mean intensity. **** means significantly different at the p-value < 0.0001. (c) Heatmap of fluorescent intensity. Figure S9 (a) Schematic representation of the constructed model. FDTD simulation of the electronic field distributions of (b) the closely packed Ag NPs on a single F-SiO2 NSs (c) and (d) two adjacent F-SiO2-Au/Ag NPs. Figure S10 Control Raman spectra (a) and SERS spectra (b) of 4-MBA. Figure S11 (a) The average SERS spectra of MBA obtained from MCF-7 cell membranes after they were treated with/without MH (40 mM). (b) t-Test analysis of the Raman intensity at 1073 cm-1 from 50 cells. **** means p-value < 0.0001. (c) Heatmap of SERS intensity. Figure S12 The ELISA kit results of the EGFR/TGF-α expression of MCF-7 cells with/without MH (40 mM). (a) The calculated concentrations of EGFR. (b) The calculated concentrations of TGF-α.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Cong, L., Qu, X. et al. A SERS/fluorescence dual-mode immuno-nanoprobe for investigating two anti-diabetic drugs on EGFR expressions. Microchim Acta 190, 124 (2023). https://doi.org/10.1007/s00604-023-05705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05705-2

Keywords

Navigation