Skip to main content

Advertisement

Log in

Electrochemical approaches based on micro- and nanomaterials for diagnosing oxidative stress

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract  

This review article comprehensively discusses the various electrochemical approaches for measuring and detecting oxidative stress biomarkers and enzymes, particularly reactive oxygen/nitrogen species, highly reactive chemical molecules, which are the byproducts of normal aerobic metabolism and can oxidize cellular components such as DNA, lipids, and proteins. First, we address the latest research on the electrochemical determination of reactive oxygen species generating enzymes, followed by detection of oxidative stress biomarkers, and final determination of total antioxidant activity (endogenous and exogenous). Most electrochemical sensing platforms exploited the unique properties of micro- and nanomaterials such as carbon nanomaterials, metal or metal oxide nanoparticles (NPs), conductive polymers and metal-nano compounds, which have been mainly used for enhancing the electrocatalytic response of sensors/biosensors. The performance of the electroanalytical devices commonly measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in terms of detection limit, sensitivity, and linear range of detection is also discussed. This article provides a comprehensive review of electrode fabrication, characterization and evaluation of their performances, which are assisting to design and manufacture an appropriate electrochemical (bio)sensor for medical and clinical applications. The key points such as accessibility, affordability, rapidity, low cost, and high sensitivity of the electrochemical sensing devices are also highlighted for the diagnosis of oxidative stress. Overall, this review brings a timely discussion on past and current approaches for developing electrochemical sensors and biosensors mainly based on micro and nanomaterials for the diagnosis of oxidative stress.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References 

  1. Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaiee A (2004) Pesticides and oxidative stress: a review. Medical Science Monitor 10(6):RA141–RA147

    CAS  PubMed  Google Scholar 

  2. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USA

    Book  Google Scholar 

  3. Bansal M, Kaushal N (2014) Oxidative stress mechanisms and their modulation. Springer

    Book  Google Scholar 

  4. Ranjbar A, Solhi H, Mashayekhi FJ, Susanabdi A, Rezaie A, Abdollahi M (2005) Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study. Environ Toxicol Pharmacol 20(1):88–91

    Article  CAS  PubMed  Google Scholar 

  5. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maheshwaran S, Akilarasan M, Chen S-M, Chen T-W, Tamilalagan E, Tzu CY, Lou B-S (2020) An ultra-sensitive electrochemical sensor for the detection of oxidative stress biomarker 3-nitro-l-tyrosine in human blood serum and saliva samples based on reduced graphene oxide entrapped zirconium (IV) oxide. J Electrochem Soc 167(6):066517

    Article  CAS  Google Scholar 

  7. Enache TA, Matei E, Diculescu VC (2018) Electrochemical sensor for carbonyl groups in oxidized proteins. Anal Chem 91(3):1920–1927

    Article  Google Scholar 

  8. Niki E (2008) Lipid peroxidation products as oxidative stress biomarkers. BioFactors 34(2):171–180

    Article  CAS  PubMed  Google Scholar 

  9. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T (2015) Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 23(14):1144–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ho E, Galougahi KK, Liu C-C, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1(1):483–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ammanath G, Yildiz UH, Palaniappan A, Liedberg B (2018) Luminescent device for the detection of oxidative stress biomarkers in artificial urine. ACS Appl Mater Interfaces 10(9):7730–7736

    Article  CAS  PubMed  Google Scholar 

  12. Kopáni M, Celec P, Danišovič L, Michalka P, Biró C (2006) Oxidative stress and electron spin resonance. Clin Chim Acta 364(1–2):61–66

    Article  PubMed  Google Scholar 

  13. Zhang Z, Liu Q, Liu Y, Qi R, Zhou L, Li Z, Yun J, Liu R, Hu Y (2020) Colorimetric H2O2 Detection Using Ag-Nanoparticle-Decorated Silica Microspheres. NANO 15(01):2050009

    Article  CAS  Google Scholar 

  14. Wei L, Lu X, Kang X, Song Y (2020) Determination of Glutathione and Cysteine in Human Breast Milk by High-Performance Liquid Chromatography with Chemiluminescence Detection for Evaluating the Oxidative Stress and Exposure to Heavy Metals of Lactating Women. Anal Lett 53(16):2607–2618

    Article  CAS  Google Scholar 

  15. Stryjak I, Warmuzińska N, Bogusiewicz J, Łuczykowski K, Bojko B (2020) Monitoring of the influence of long-term oxidative stress and ischemia on the condition of kidneys using solid-phase microextraction chemical biopsy coupled with liquid chromatography–high-resolution mass spectrometry. J Sep Sci 43(9–10):1867–1878

    Article  CAS  PubMed  Google Scholar 

  16. Liang C, Chen X, Tang Q, Ji W, Jiang Y, Mao L, Wang M (2020) An activity-based two-photon fluorescent probe for real-time and reversible imaging of oxidative stress in the rat brain. Chem Commun 56(47):6368–6371

    Article  CAS  Google Scholar 

  17. Zhu Y, Wu J, Wang K, Xu H, Qu M, Gao Z, Guo L, Xie J (2021) Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy. Talanta 224:121852

    Article  CAS  PubMed  Google Scholar 

  18. Ostojić J, Herenda S, Bešić Z, Miloš M, Galić B (2017) Advantages of an electrochemical method compared to the spectrophotometric kinetic study of peroxidase inhibition by boroxine derivative. Molecules 22(7):1120

    Article  PubMed  PubMed Central  Google Scholar 

  19. Numal R, Selcuk O, Kurbanoglu S, Shah A, Siddiq M, Uslu B (2022) Trends in electrochemical nanosensors for the analysis of antioxidants. TrAC, Trends Anal Chem 153:116626

  20. Rojas D, Hernández-Rodríguez JF, Della Pelle F, Escarpa A, Compagnone D (2022) New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis. Microchimica Acta 189(3):1–22

    Article  Google Scholar 

  21. Amatore C, Arbault S, Guille M, Lemaitre F (2008) Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress. Chem Rev 108(7):2585–2621

    Article  CAS  PubMed  Google Scholar 

  22. Brainina KZ, Shpigun LK (2022) State-of-the-art electrochemistry for the assessment of oxidative stress and integral antioxidant activity of biological environments. Electrochemical Science Advances e2100219:1–24

    Google Scholar 

  23. Ahoulou S, Vilà N, Pillet S, Schaniel D, Walcarius A (2020) Non-covalent Immobilization of Iron-triazole (Fe (Htrz) 3) Molecular Mediator in Mesoporous Silica Films for the Electrochemical Detection of Hydrogen Peroxide. Electroanalysis 32(4):690–697

    Article  CAS  Google Scholar 

  24. Balamurugan M, Santharaman P, Madasamy T, Rajesh S, Sethy NK, Bhargava K, Kotamraju S, Karunakaran C (2018) Recent trends in electrochemical biosensors of superoxide dismutases. Biosens Bioelectron 116:89–99

    Article  CAS  PubMed  Google Scholar 

  25. Khan AA, Alsahli MA, Rahmani AH (2018) Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Medical Sciences 6(2):33

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nakazato T, Sagawa M, Yamato K, Xian M, Yamamoto T, Suematsu M, Ikeda Y, Kizaki M (2007) Myeloperoxidase is a key regulator of oxidative stress–mediated apoptosis in myeloid leukemic cells. Clin Cancer Res 13(18):5436–5445

    Article  CAS  PubMed  Google Scholar 

  27. Nybo T, Cai H, Chuang CY, Gamon LF, Rogowska-Wrzesinska A, Davies MJ (2018) Chlorination and oxidation of human plasma fibronectin by myeloperoxidase-derived oxidants, and its consequences for smooth muscle cell function. Redox Biol 19:388–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ndrepepa G (2019) Myeloperoxidase–A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta 493:36–51

    Article  CAS  PubMed  Google Scholar 

  29. Koeth RA, Haselden V, Tang WW (2013) Myeloperoxidase in cardiovascular disease. Adv Clin Chem 62:1–32

    Article  CAS  PubMed  Google Scholar 

  30. Chandler JD, Margaroli C, Horati H, Kilgore MB, Veltman M, Liu HK, Taurone AJ, Peng L, Guglani L, Uppal K (2018) Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease. Eur Respir J 52(4):1–11

    Article  Google Scholar 

  31. Liu B, Lu L (2019) Amperometric sandwich immunoassay for determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbon. Microchim Acta 186(4):262

    Article  Google Scholar 

  32. Bekhit M, Gorski W (2019) Electrochemical Assays and Immunoassays of the Myeloperoxidase/SCN–/H2O2 System. Anal Chem 91(4):3163–3169

    Article  CAS  PubMed  Google Scholar 

  33. Barallat J, Olivé-Monllau R, Gonzalo-Ruiz J, Rl R-S, Muñoz-Pascual FX, Ortega AGn, Baldrich E, (2013) Chronoamperometric magneto immunosensor for myeloperoxidase detection in human plasma based on a magnetic switch produced by 3D laser sintering. Anal Chem 85(19):9049–9056

    Article  CAS  PubMed  Google Scholar 

  34. Diao QZ, Li Y, Zhou M, Xie GM (2012) A new immunosensor for serum myeloperoxidase based on self-assembly of multi-walled carbon nanotubes/thionine/gold nanoparticles-chitosan. In: Advanced Materials Research. Trans Tech Publ 343–344:1207–1211

    Google Scholar 

  35. Lu L, Liu B, Li S, Zhang W, Xie G (2011) Improved electrochemical immunosensor for myeloperoxidase in human serum based on nanogold/cerium dioxide-BMIMPF6/l-Cysteine composite film. Colloids Surf, B 86(2):339–344

    Article  CAS  Google Scholar 

  36. Panday A, Sahoo MK, Osorio D, Batra S (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12(1):5–23

    Article  CAS  PubMed  Google Scholar 

  37. Atashi F, Modarressi A, Pepper MS (2015) The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem cells and development 24(10):1150–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discovery 10(6):453–471

    Article  CAS  PubMed  Google Scholar 

  39. Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G (2000) Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Commun 273(1):5–9

    Article  CAS  PubMed  Google Scholar 

  40. Sekioka N, Kato D, Kurita R, Hirono S, Niwa O (2008) Improved detection limit for an electrochemical γ-aminobutyric acid sensor based on stable NADPH detection using an electron cyclotron resonance sputtered carbon film electrode. Sens Actuators, B Chem 129(1):442–449

    Article  CAS  Google Scholar 

  41. Ashkenazi A, Abu-Rabeah K, Marks R (2009) Electrochemistry and chemiluminescence techniques compared in the detection of NADPH oxidase activity in phagocyte cells. Talanta 77(4):1460–1465

    Article  CAS  PubMed  Google Scholar 

  42. Ghosh C, Hossain M, Solanki J, Dadas A, Marchi N, Janigro D (2016) Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discovery Today 21(10):1609–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fleming BD, Tian Y, Bell SG, Wong LL, Urlacher V, Hill HAO (2003) Redox properties of cytochrome P450BM3 measured by direct methods. Eur J Biochem 270(20):4082–4088

    Article  CAS  PubMed  Google Scholar 

  44. Fantuzzi A, Fairhead M, Gilardi G (2004) Direct electrochemistry of immobilized human cytochrome P450 2E1. J Am Chem Soc 126(16):5040–5041

    Article  CAS  PubMed  Google Scholar 

  45. Peng L, Yang X, Zhang Q, Liu S (2008) Electrochemistry of cytochrome P450 2B6 on electrodes modified with zirconium dioxide nanoparticles and platin components. Electroanalysis: Int J Devoted Fundam Pract Aspects Electroanalysis 20(7):803–807

    Article  CAS  Google Scholar 

  46. Rhieu SY, Ludwig DR, Siu VS, Palmore GTR (2009) Direct electrochemistry of cytochrome P450 27B1 in surfactant films. Electrochem Commun 11(10):1857–1860

    Article  CAS  Google Scholar 

  47. Shumyantseva VV, Carrara S, Bavastrello V, Riley DJ, Bulko TV, Skryabin KG, Archakov AI, Nicolini C (2005) Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium–graphite electrodes. Biosens Bioelectron 21(1):217–222

    Article  CAS  PubMed  Google Scholar 

  48. Baj-Rossi C, Jost TR, Cavallini A, Grassi F, De Micheli G, Carrara S (2014) Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor. Biosens Bioelectron 53:283–287

    Article  CAS  PubMed  Google Scholar 

  49. Müller M, Agarwal N, Kim J (2016) A cytochrome P450 3A4 biosensor based on generation 4.0 PAMAM dendrimers for the detection of caffeine. Biosensors 6(3):44

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tiwari BK, Pandey KB, Abidi A, Rizvi SI (2013) Markers of oxidative stress during diabetes mellitus. Journal of Biomarkers 2013:1–8

    Article  Google Scholar 

  51. Armenteros M, Heinonen M, Ollilainen V, Toldrá F, Estevez M (2009) Analysis of protein carbonyls in meat products by using the DNPH-method, fluorescence spectroscopy and liquid chromatography–electrospray ionisation–mass spectrometry (LC–ESI–MS). Meat Sci 83(1):104–112

    Article  CAS  PubMed  Google Scholar 

  52. Marrocco I, Altieri F, Peluso I (2017) Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxidative Med Cell Longev 2017:1–32

    Article  Google Scholar 

  53. Boumya W, Hammani H, Laghrib F, Lahrich S, Farahi A, Achak M, Bakasse M, Mhammedi ME (2017) Electrochemical Study of 2, 4-Dinitrophenylhydrazine as Derivatization Reagent and Aldehydes at Carbon Glassy Electrode. Electroanalysis 29(7):1700–1711

    Article  CAS  Google Scholar 

  54. Saczk A, Okumura L, De Oliveira M, Zanoni MVB, Stradiotto NR (2006) Determination of aldehydes and ketones in fuel ethanol by high-performance liquid chromatography with electrochemical detection. Chromatographia 63(1–2):45–51

    Article  CAS  Google Scholar 

  55. Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Sn C, Romero N, Alvarez B, Radi R (2018) Biochemistry of peroxynitrite and protein tyrosine nitration. Chem Rev 118(3):1338–1408

    Article  CAS  PubMed  Google Scholar 

  56. Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA (2003) Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem 85(6):1394–1401

    Article  CAS  PubMed  Google Scholar 

  57. Hensley K, Williamson KS, Floyd RA (2000) Measurement of 3-nitrotyrosine and 5-nitro-γ-tocopherol by high-performance liquid chromatography with electrochemical detection. Free Radical Biol Med 28(4):520–528

    Article  CAS  Google Scholar 

  58. Ali HM, Alsohaimi IH, Nayl A, Essawy AA, Gamal M, Ibrahim H (2022) A new ultrasensitive platform based on f-GCNFs@ nano-CeO2 core-shell nanocomposite for electrochemical sensing of oxidative stress biomarker 3-nitrotyrosine in presence of uric acid and tyrosine. Microchem J 183:108068

    Article  CAS  Google Scholar 

  59. Bandookwala M, Thakkar D, Sengupta P (2020) Advancements in the analytical quantification of nitroxidative stress biomarker 3-nitrotyrosine in biological matrices. Crit Rev Anal Chem 50(3):265–289

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, Yang H, Pöschl U (2011) Analysis of nitrated proteins and tryptic peptides by HPLC-chip-MS/MS: site-specific quantification, nitration degree, and reactivity of tyrosine residues. Anal Bioanal Chem 399(1):459–471

    Article  CAS  PubMed  Google Scholar 

  61. Chen H-JC, Chiu W-L (2008) Simultaneous detection and quantification of 3-nitrotyrosine and 3-bromotyrosine in human urine by stable isotope dilution liquid chromatography tandem mass spectrometry. Toxicol Lett 181(1):31–39

    Article  CAS  PubMed  Google Scholar 

  62. Martins GV, Marques AC, Fortunato E, Sales MGF (2018) Wax-printed paper-based device for direct electrochemical detection of 3-nitrotyrosine. Electrochim Acta 284:60–68

    Article  CAS  Google Scholar 

  63. Roy E, Patra S, Madhuri R, Sharma PK (2015) Developing electrochemical sensor for point-of-care diagnostics of oxidative stress marker using imprinted bimetallic Fe/Pd nanoparticle. Talanta 132:406–415

    Article  CAS  PubMed  Google Scholar 

  64. Wang S, Sun G, Chen Z, Liang Y, Zhou Q, Pan Y, Zhai H (2018) Constructing a novel composite of molecularly imprinted polymer-coated AuNPs electrochemical sensor for the determination of 3-nitrotyrosine. Electrochim Acta 259:893–902

    Article  CAS  Google Scholar 

  65. Richards DA, Silva MA, Devall AJ (2006) Electrochemical detection of free 3-nitrotyrosine: application to microdialysis studies. Anal Biochem 351(1):77–83

    Article  CAS  PubMed  Google Scholar 

  66. Itabe H (2012) Oxidized low-density lipoprotein as a biomarker of in vivo oxidative stress: from atherosclerosis to periodontitis. Journal of clinical biochemistry and nutrition 51(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hirowatari Y, Yoshida H (2019) Innovatively established analysis method for lipoprotein profiles based on high-performance anion-exchange liquid chromatography. J Atheroscler Thromb 26(12):1027–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ali MA, Singh N, Srivastava S, Agrawal VV, John R, Onoda M, Malhotra BD (2014) Chitosan-modified carbon nanotubes-based platform for low-density lipoprotein detection. Appl Biochem Biotechnol 174(3):926–935

    Article  CAS  PubMed  Google Scholar 

  69. Matharu Z, Sumana G, Gupta V, Malhotra B (2010) Langmuir-Blodgett films of polyaniline for low density lipoprotein detection. Thin Solid Films 519(3):1110–1114

    Article  CAS  Google Scholar 

  70. Yan W, Chen X, Li X, Feng X, Zhu J-J (2008) Fabrication of a label-free electrochemical immunosensor of low-density lipoprotein. J Phys Chem B 112(4):1275–1281

    Article  CAS  PubMed  Google Scholar 

  71. Kaur G, Tomar M, Gupta V (2017) Nanostructured NiO-based reagentless biosensor for total cholesterol and low density lipoprotein detection. Anal Bioanal Chem 409(8):1995–2005

    Article  CAS  PubMed  Google Scholar 

  72. Oliveira MD, Abdalla DS, Guilherme DF, Faulin TE, Andrade CA (2011) Impedimetric immunosensor for electronegative low density lipoprotein (LDL−) based on monoclonal antibody adsorbed on (polyvinyl formal)–gold nanoparticles matrix. Sens Actuators, B Chem 155(2):775–781

    Article  CAS  Google Scholar 

  73. Cabral-Miranda G, Yamashiro-Kanashiro E, Gidlund M, Sales MGF (2014) Specific label-free and real-time detection of oxidized low density lipoprotein (oxLDL) using an immunosensor with three monoclonal antibodies. J Mater Chem B 2(5):477–484

    Article  CAS  PubMed  Google Scholar 

  74. Kaur G, Tomar M, Gupta V (2016) Realization of a label-free electrochemical immunosensor for detection of low density lipoprotein using NiO thin film. Biosens Bioelectron 80:294–299

    Article  CAS  PubMed  Google Scholar 

  75. Chen J, Zeng L, Xia T, Li S, Yan T, Wu S, Qiu G, Liu Z (2015) Toward a biomarker of oxidative stress: a fluorescent probe for exogenous and endogenous malondialdehyde in living cells. Anal Chem 87(16):8052–8056

    Article  CAS  PubMed  Google Scholar 

  76. Khan MA, Baseer A (2000) Increased malondialdehyde levels in coronary heart disease. J Pak Med Assoc 50(8):261–264

    CAS  PubMed  Google Scholar 

  77. Zhang G, Tang Y, Shi X, Gao R, Sun Y, Du W, Fu Q (2013) A chemiluminescence method to detect malondialdehyde in plasma and urine. Anal Biochem 443(1):16–21

    Article  CAS  PubMed  Google Scholar 

  78. Zhang D, Haputhanthri R, Ansar SM, Vangala K, De Silva HI, Sygula A, Saebo S, Pittman CU (2010) Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy. Anal Bioanal Chem 398(7–8):3193–3201

    Article  CAS  PubMed  Google Scholar 

  79. Stalikas CD, Konidari CN (2001) Analysis of malondialdehyde in biological matrices by capillary gas chromatography with electron-capture detection and mass spectrometry. Anal Biochem 290(1):108–115

    Article  CAS  PubMed  Google Scholar 

  80. Yuan L, Lan Y, Han M, Bao J, Tu W, Dai Z (2013) Label-free and facile electrochemical biosensing using carbon nanotubes for malondialdehyde detection. Analyst 138(11):3131–3134

    Article  CAS  PubMed  Google Scholar 

  81. Hasanzadeh M, Mokhtari F, Jouyban-Gharamaleki V, Mokhtarzadeh A, Shadjou N (2018) Electrochemical monitoring of malondialdehyde biomarker in biological samples via electropolymerized amino acid/chitosan nanocomposite. J Mol Recognit 31(8):e2717

    Article  PubMed  Google Scholar 

  82. Bhat LR, Vedantham S, Krishnan UM, Rayappan JBB (2019) Methylglyoxal–an emerging biomarker for diabetes mellitus diagnosis and its detection methods. Biosens Bioelectron 133:107–124

    Article  Google Scholar 

  83. Kalapos MP, Desai KM, Wu L (2010) Methylglyoxal, oxidative stress, and aging. Aging and age-related disorders. Humana Press, Totowa, pp 149–167

  84. Dhananjayan K, Irrgang F, Raju R, Harman DG, Moran C, Srikanth V, Münch G (2019) Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection. Anal Biochem 573:51–66

    Article  CAS  PubMed  Google Scholar 

  85. Wu X, Zhang W, Morales-Verdejo C, Sheng Y, Camarada MB, Chen L, Huang Z, Wen Y (2019) Nanohybrid sensor for simple, cheap, and sensitive electrochemical recognition and detection of methylglyoxal as chemical markers. J Electroanal Chem 839:177–186

    Article  CAS  Google Scholar 

  86. Chatterjee S, Wen J, Chen A (2013) Electrochemical determination of methylglyoxal as a biomarker in humanplasma. Biosens Bioelectron 42:349–354

    Article  CAS  PubMed  Google Scholar 

  87. Jayaprakasan A, Thangavel A, Bhat LR, Gumpu MB, Nesakumar N, Babu KJ, Vedantham S, Rayappan JBB (2018) Fabrication of an electrochemical biosensor with ZnO nanoflakes interface for methylglyoxal quantification in food samples. Food Sci Biotechnol 27(1):9–17

    Article  CAS  PubMed  Google Scholar 

  88. Alagappan LP, Shanmugasundaram P, Ramachandra BL, Gumpu MB, Nesakumar N, Babu KJ, Vedantham S, Rayappan JBB (2017) Fabrication of electrochemical biosensor with vanadium pentoxide nano-interface for the detection of methylglyoxal in rice. Anal Biochem 528:19–25

    Article  CAS  PubMed  Google Scholar 

  89. Ramachandra BL, Vedantham S, Krishnan UM, Nesakumar N, Rayappan JBB (2016) Estimation of methylglyoxal in cow milk–an accurate electrochemical response time based approach. Anal Methods 8(10):2207–2217

    Article  CAS  Google Scholar 

  90. Spickett CM (2013) The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol 1(1):145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schaur RJ, Siems W, Bresgen N, Eckl PM (2015) 4-Hydroxy-nonenal—a bioactive lipid peroxidation product. Biomolecules 5(4):2247–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Goldring C, Casini AF, Maellaro E, Del Bello B, Comporti M (1993) Determination of 4-hydroxynonenal by high-performance liquid chromatography with electrochemical detection. Lipids 28(2):141–145

    Article  CAS  PubMed  Google Scholar 

  93. Luo J, Shi R (2005) Acrolein induces oxidative stress in brain mitochondria. Neurochem Int 46(3):243–252

    Article  CAS  PubMed  Google Scholar 

  94. Casella IG, Gatta M (2002) Determination of aliphatic organic acids by high-performance liquid chromatography with pulsed electrochemical detection. J Agric Food Chem 50(1):23–28

    Article  CAS  PubMed  Google Scholar 

  95. Dossi N, Susmel S, Toniolo R, Pizzariello A, Bontempelli G (2009) Application of microchip electrophoresis with electrochemical detection to environmental aldehyde monitoring. Electrophoresis 30(19):3465–3471

    Article  CAS  PubMed  Google Scholar 

  96. Montuschi P, Barnes PJ, Roberts LJ (2004) Isoprostanes: markers and mediators of oxidative stress. FASEB J 18(15):1791–1800

    Article  CAS  PubMed  Google Scholar 

  97. Psathakis K, Papatheodorou G, Plataki M, Panagou P, Loukides S, Siafakas NM, Bouros D (2004) 8-Isoprostane, a marker of oxidative stress, is increased in the expired breath condensate of patients with pulmonary sarcoidosis. Chest 125(3):1005–1011

    Article  CAS  PubMed  Google Scholar 

  98. Peña-Bautista C, Baquero M, López-Nogueroles M, Vento M, Hervás D, Cháfer-Pericás C (2020) Isoprostanoids Levels in Cerebrospinal Fluid Do Not Reflect Alzheimer’s Disease. Antioxidants 9(5):407

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sánchez-Tirado E, González-Cortés A, Yudasaka M, Iijima S, Langa F, Yáñez-Sedeño P, Pingarrón J (2017) Electrochemical immunosensor for the determination of 8-isoprostane aging biomarker using carbon nanohorns-modified disposable electrodes. J Electroanal Chem 793:197–202

    Article  Google Scholar 

  100. Lee G, Lee J, Kim J, Choi HS, Kim J, Lee S, Lee H (2017) Single microfluidic electrochemical sensor system for simultaneous multi-pulmonary hypertension biomarker analyses. Sci Rep 7(1):1–8

    Google Scholar 

  101. Tsai M-C, Huang T-L (2015) Thiobarbituric acid reactive substances (TBARS) is a state biomarker of oxidative stress in bipolar patients in a manic phase. J Affect Disord 173:22–26

    Article  CAS  PubMed  Google Scholar 

  102. Vaneesorn Y, Smyth WF (1980) The determination of some 2-thiobarbiturates by cathodic stripping voltammetry. Anal Chim Acta 117:183–191

    Article  CAS  Google Scholar 

  103. Shahrokhian S, Hamzehloei A, Thaghani A, Mousavi SR (2004) Electrocatalytic Oxidation of 2-Thiouracil and 2-Thiobarbituric Acid at a Carbon-Paste Electrode Modified with Cobalt Phthalocyanine. Electroanalysis: Int J Devoted Fundam Pract Aspects Electroanalysis 16(11):915–921

    Article  CAS  Google Scholar 

  104. You T, Yang X, Wang E (2000) Determination of barbituric acid and 2-thiobarbituric acid with end-column electrochemical detection by capillary electrophoresis. Talanta 51(6):1213–1218

    Article  CAS  PubMed  Google Scholar 

  105. Zhang D, Zhang J, Li M, Li W, Aimaiti G, Tuersun G, Ye J, Chu Q (2011) A novel miniaturised electrophoretic method for determining formaldehyde and acetaldehyde in food using 2-thiobarbituric acid derivatisation. Food Chem 129(1):206–212

    Article  CAS  Google Scholar 

  106. Nishida N, Arizumi T, Takita M, Kitai S, Yada N, Hagiwara S, Inoue T, Minami Y, Ueshima K, Sakurai T (2013) Reactive oxygen species induce epigenetic instability through the formation of 8-hydroxydeoxyguanosine in human hepatocarcinogenesis. Dig Dis 31(5–6):459–466

    Article  PubMed  Google Scholar 

  107. Wu LL, Chiou C-C, Chang P-Y, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  108. Chiorcea-Paquim A-M (2022) 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC–ECD Determination. Molecules 27(5):1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lin R, Zhou S, Zhao H, Lin H, Wang L, Hu W, Gao H, Qiu B (2022) A novel signal enhancement strategy for the detection of DNA oxidative damage biomarker 8-OHdG based on the synergy between β-CD-CuNCs and multi-walled carbon nanotubes. Am J Transl Res 14(2):740

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gutiérrez A, Gutiérrez S, García G, Galicia L, Rivas GA (2011) Determinatiom of 8-Hydroxy 2′-Deoxyguanosine Using Electrodes Modified with a Dispersion of Carbon Nanotubes in Polyethylenimine. Electroanalysis 23(5):1221–1228

    Article  Google Scholar 

  111. Govindasamy M, Wang S-F, Subramanian B, Ramalingam RJ, Al-Lohedan H, Sathiyan A (2019) A novel electrochemical sensor for determination of DNA damage biomarker (8-hydroxy-2′-deoxyguanosine) in urine using sonochemically derived graphene oxide sheets covered zinc oxide flower modified electrode. Ultrason Sonochem 58:104622

    Article  CAS  PubMed  Google Scholar 

  112. Yang L, Wang B, Qi H, Gao Q, Li C-z, Zhang C (2015) Highly sensitive electrochemical sensor for the determination of 8-hydroxy-2′-deoxyguanosine incorporating SWCNTs-Nafion composite film. Journal of Sensors 2015:1–11

    CAS  Google Scholar 

  113. Khan M, Liu X, Tang Y, Liu X (2018) Ultra-sensitive electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine with poly (L-arginine)/graphene wrapped Au nanoparticles modified electrode. Biosens Bioelectron 117:508–514

    Article  CAS  PubMed  Google Scholar 

  114. Jia L-P, Liu J-F, Wang H-S (2015) Electrochemical performance and detection of 8-Hydroxy-2′-deoxyguanosine at single-stranded DNA functionalized graphene modified glassy carbon electrode. Biosens Bioelectron 67:139–145

    Article  CAS  PubMed  Google Scholar 

  115. Martins GV, Tavares AP, Fortunato E, Sales MGF (2017) based sensing device for electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine (8-OHdG) in point-of-care. Sci Rep 7(1):1–10

    Article  Google Scholar 

  116. Pan D, Zhou Q, Rong S, Zhang G, Zhang Y, Liu F, Li M, Chang D, Pan H (2016) Electrochemical immunoassay for the biomarker 8-hydroxy-2′-deoxyguanosine using a glassy carbon electrode modified with chitosan and poly (indole-5-carboxylic acid). Microchim Acta 183(1):361–368

    Article  CAS  Google Scholar 

  117. Shang T, Wang P, Liu X, Jiang X, Hu Z, Lu X (2018) Facile synthesis of porous single-walled carbon nanotube for sensitive detection of 8-Hydroxy-2′-deoxyguanosine. J Electroanal Chem 808:28–34

    Article  CAS  Google Scholar 

  118. Wan C, Liu T, Wei S, Zhang S (2008) Electrochemical determination of 8-hydroxydeoxyguanosine using a carbon nanotube modified electrode. Russ J Electrochem 44(3):327–331

    Article  CAS  Google Scholar 

  119. Zhang T-T, Zhao H-M, Fan X-F, Chen S, Quan X (2015) Electrochemiluminescence immunosensor for highly sensitive detection of 8-hydroxy-2′-deoxyguanosine based on carbon quantum dot coated Au/SiO2 core–shell nanoparticles. Talanta 131:379–385

    Article  CAS  PubMed  Google Scholar 

  120. Dhulkefl AJ, Atacan K, Bas SZ, Ozmen M (2020) An Ag–TiO 2–reduced graphene oxide hybrid film for electrochemical detection of 8-hydroxy-2′-deoxyguanosine as an oxidative DNA damage biomarker. Anal Methods 12(4):499–506

    Article  Google Scholar 

  121. Varodi C, Pogacean F, Coros M, Rosu M-C, Stefan-van Staden R-I, Gal E, Tudoran L-B, Pruneanu S, Mirel S (2019) Detection of 8-Hydroxy-2′-Deoxyguanosine Biomarker with a Screen-Printed Electrode Modified with Graphene. Sensors 19(19):4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Presnell CE, Bhatti G, Numan LS, Lerche M, Alkhateeb SK, Ghalib M, Shammaa M, Kavdia M (2013) Computational insights into the role of glutathione in oxidative stress. Curr Neurovascular Res 10(2):185–194

    Article  CAS  Google Scholar 

  123. Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8(6):385–387

    Article  PubMed  Google Scholar 

  124. Bano D, Chandra S, Yadav PK, Singh VK, Hasan SH (2020) Off-on detection of glutathione based on the nitrogen, sulfur codoped carbon quantum dots@ MnO2 nano-composite in human lung cancer cells and blood serum. J Photochem Photobiol A Chem 398:112558–112566

    Article  CAS  Google Scholar 

  125. Harfield JC, Batchelor-McAuley C, Compton RG (2012) Electrochemical determination of glutathione: a review. Analyst 137(10):2285–2296

    Article  CAS  PubMed  Google Scholar 

  126. Lee P, Ward K, Tschulik K, Chapman G, Compton R (2014) Electrochemical detection of glutathione using a poly (caffeic acid) nanocarbon composite modified electrode. Electroanalysis 26(2):366–373

    Article  CAS  Google Scholar 

  127. Childs S, Haroune N, Williams L, Gronow M (2016) Determination of cellular glutathione: glutathione disulfide ratio in prostate cancer cells by high performance liquid chromatography with electrochemical detection. J Chromatogr A 1437:67–73

    Article  CAS  PubMed  Google Scholar 

  128. Lei P, Zhou Y, Zhu R, Liu Y, Dong C, Shuang S (2019) Facile synthesis of iron phthalocyanine functionalized N, B–doped reduced graphene oxide nanocomposites and sensitive electrochemical detection for glutathione. Sens Actuators: B Chem 297:126756

    Article  CAS  Google Scholar 

  129. Liu Q, Bao J, Yang M, Wang X, Lan S, Hou C, Wang Y, Fa H (2018) A core-shell MWCNT@ rGONR heterostructure modified glassy carbon electrode for ultrasensitive electrochemical detection of glutathione. Sens Actuators: B Chem 274:433–440

    Article  CAS  Google Scholar 

  130. Gao W, Liu Z, Qi L, Lai J, Kitte SA, Xu G (2016) Ultrasensitive glutathione detection based on lucigenin cathodic electrochemiluminescence in the presence of MnO2 nanosheets. Anal Chem 88(15):7654–7659

    Article  CAS  PubMed  Google Scholar 

  131. He H, Du J, Hu Y, Ru J, Lu X (2013) Detection of glutathione based on nickel hexacyanoferrate film modified Pt ultramicroelectrode by introducing cetyltrimethylammonium bromide and Au nanoparticles. Talanta 115:381–385

    Article  CAS  PubMed  Google Scholar 

  132. Rezaei B, Khosropour H, Ensafi AA, Hadadzadeh H, Farrokhpour H (2014) A differential pulse voltammetric sensor for determination of glutathione in real samples using a Trichloro (terpyridine) ruthenium (III)/Multiwall carbon nanotubes modified paste electrode. IEEE Sens J 15(1):483–490

    Article  Google Scholar 

  133. Vinoth V, Wu JJ, Asiri AM, Anandan S (2017) Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione. Ultrason Sonochem 39:363–373

    Article  CAS  PubMed  Google Scholar 

  134. Ru J, Du J, Qin D-D, Huang B-M, Xue Z-H, Zhou X-B, Lu X-Q (2013) An electrochemical glutathione biosensor: Ubiquinone as a transducer. Talanta 110:15–20

    Article  CAS  PubMed  Google Scholar 

  135. Çubukçu M, Ertaş FN, Anık Ü (2013) Centri-voltammetric determination of glutathione. Microchim Acta 180(1–2):93–100

    Article  Google Scholar 

  136. Wahyuni WT, Rohaeti E, Sari DR (2018) Graphene Modified Screen Printed Carbon Electrode for Voltammetric Detection of Glutathione as Oxidative Stress Biomarker. E&ES 187(1):012078

    Google Scholar 

  137. Stojanović ZS, Đurović AD, Ashrafi AM, Koudelková Z, Zítka O, Richter L (2020) Highly sensitive simultaneous electrochemical determination of reduced and oxidized glutathione in urine samples using antimony trioxide modified carbon paste electrode. Sensors Actuators B Chem 318:128141

  138. Ma S, Yang Q, Zhang W, Xiao G, Wang M, Cheng L, Zhou X, Zhao M, Ji J, Zhang J (2020) Silver nanoclusters and carbon dots based light-addressable sensors for multichannel detections of dopamine and glutathione and its applications in probing of Parkinson’s diseases. Talanta 219:121290–121300

    Article  CAS  PubMed  Google Scholar 

  139. Mazloum-Ardakani M, Tavakolian-Ardakani Z, Banitaba H (2020) Electrochemical determination of glutathione in hemolysed erythrocytes. Scientia Iranica 27(6):3412–3420

    Google Scholar 

  140. Rawat B, Mishra KK, Barman U, Arora L, Pal D, Paily RP (2020) Two-Dimensional MoS 2-Based Electrochemical Biosensor for Highly Selective Detection of Glutathione. IEEE Sens J 20(13):6937–6944

    Article  CAS  Google Scholar 

  141. Fu X, Cate SA, Dominguez M, Osborn W, Özpolat T, Konkle BA, Chen J, López JA (2019) Cysteine disulfides (Cys-ss-X) as sensitive plasma biomarkers of oxidative stress. Sci Rep 9(1):1–9

    Google Scholar 

  142. Morris AA, Ko Y-A, Udeshi E, Jones DP, Butler J, Quyyumi A (2018) Novel Biomarkers of Oxidative Stress are Associated with Risk of Death and Hospitalization in Patients with Heart Failure. J Cardiac Fail 24(8):S21

    Article  Google Scholar 

  143. Madasamy T, Santschi C, Martin OJ (2015) A miniaturized electrochemical assay for homocysteine using screen-printed electrodes with cytochrome c anchored gold nanoparticles. Analyst 140(17):6071–6078

    Article  CAS  PubMed  Google Scholar 

  144. Shaidarova L, Ziganshina S, Tikhonova L, Budnikov G (2003) Electrocatalytic oxidation and flow-injection determination of sulfur-containing amino acids at graphite electrodes modified with a ruthenium hexacyanoferrate film. J Anal Chem 58(12):1144–1150

    Article  CAS  Google Scholar 

  145. Mani V, Huang S-T, Devasenathipathy R, Yang TC (2016) Electropolymerization of cobalt tetraamino-phthalocyanine at reduced graphene oxide for electrochemical determination of cysteine and hydrazine. RSC Adv 6(44):38463–38469

    Article  CAS  Google Scholar 

  146. Yosypchuk B, Novotný L (2002) Cathodic stripping voltammetry of cysteine using silver and copper solid amalgam electrodes. Talanta 56(5):971–976

    Article  CAS  PubMed  Google Scholar 

  147. Ge S, Yan M, Lu J, Zhang M, Yu F, Yu J, Song X, Yu S (2012) Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis. Biosens Bioelectron 31(1):49–54

    Article  CAS  PubMed  Google Scholar 

  148. Cao F, Dong Q, Li C, Kwak D, Huang Y, Song D, Lei Y (2018) Sensitive and Selective Electrochemical Determination of L-Cysteine Based on Cerium Oxide Nanofibers Modified Screen Printed Carbon Electrode. Electroanalysis 30(6):1133–1139

    Article  CAS  Google Scholar 

  149. Bananezhad A, Karimi-Maleh H, Ganjali MR, Norouzi P (2018) MnO2-TiO2 Nanocomposite and 2-(3, 4-Dihydroxyphenethyl) Isoindoline-1, 3-Dione as an Electrochemical Platform for the Concurrent Determination of Cysteine. Tryptophan Uric Acid Electroanalysis 30(8):1767–1773

    Google Scholar 

  150. Ensafi AA, Dadkhah-Tehrani S, Karimi-Maleh H (2011) A voltammetric sensor for the simultaneous determination of L-cysteine and tryptophan using a p-aminophenol-multiwall carbon nanotube paste electrode. Anal Sci 27(4):409–409

    Article  CAS  PubMed  Google Scholar 

  151. Dong Y, Pei L, Chu X, Zhang W, Zhang Q (2010) Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode. Electrochim Acta 55(18):5135–5141

    Article  CAS  Google Scholar 

  152. Hsiao Y-P, Su W-Y, Cheng J-R, Cheng S-H (2011) Electrochemical determination of cysteine based on conducting polymers/gold nanoparticles hybrid nanocomposites. Electrochim Acta 56(20):6887–6895

    Article  CAS  Google Scholar 

  153. Lee PT, Thomson JE, Karina A, Salter C, Johnston C, Davies SG, Compton RG (2015) Selective electrochemical determination of cysteine with a cyclotricatechylene modified carbon electrode. Analyst 140(1):236–242

    Article  CAS  PubMed  Google Scholar 

  154. Nezamzadeh-Ejhieh A, Hashemi H-S (2012) Voltammetric determination of cysteine using carbon paste electrode modified with Co (II)-Y zeolite. Talanta 88:201–208

    Article  CAS  PubMed  Google Scholar 

  155. Yao J, Liu C, Liu L, Chen M, Yang M (2018) An Electrochemical Sensor for Sensitive Determination of L-cysteine and Its Electrochemical Kinetics on AgNPs/GQDs/GCE Composite Modified Electrode. J Electrochem Soc 165(13):B551

    Article  CAS  Google Scholar 

  156. Wang Y, Wang W, Li G, Liu Q, Wei T, Li B, Jiang C, Sun Y (2016) Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe 3 O 4 nanoparticles on reduced graphene oxide. Microchim Acta 183(12):3221–3228

    Article  CAS  Google Scholar 

  157. Sonkar PK, Ganesan V, Rao V (2014) Electrocatalytic oxidation and determination of cysteine at oxovanadium (IV) salen coated electrodes. Int J Electrochem 2014:316254–316260

    Article  Google Scholar 

  158. Maheshwari H, Vila N, Herzog G, Walcarius A (2020) Selective detection of cysteine at a mesoporous silica film electrode functionalized with ferrocene in the presence of glutathione. ChemElectroChem 7(9):2095–2101

    Article  CAS  Google Scholar 

  159. Beitollahi H, Ganjali MR, Norouzi P, Movlaee K, Hosseinzadeh R, Tajik S (2020) A novel electrochemical sensor based on graphene nanosheets and ethyl 2-(4-ferrocenyl-[1, 2, 3] triazol-1-yl) acetate for electrocatalytic oxidation of cysteine and tyrosine. Measurement 152:107302

    Article  Google Scholar 

  160. Peng J, Huang Q, Liu Y, Huang Y, Zhang C, Xiang G (2020) Photoelectrochemical detection of L-cysteine with a covalently grafted ZnTAPc-Gr-based probe. Electroanalysis 32(6):1237–1242

    Article  CAS  Google Scholar 

  161. Luo S, Levine RL (2009) Methionine in proteins defends against oxidative stress. FASEB J 23(2):464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Peng H, Deng H, Jian M, Liu A, Bai F, Lin X, Chen W (2017) Electrochemiluminescence sensor based on methionine-modified gold nanoclusters for highly sensitive determination of dopamine released by cells. Microchimica A 184(3):735–743

    Article  CAS  Google Scholar 

  163. Gómez-Mingot M, Iniesta J, Montiel V, Kadara RO, Banks CE (2011) Direct oxidation of methionine at screen printed graphite macroelectrodes: towards rapid sensing platforms. Sens Actuators: B Chem 155(2):831–836

    Article  Google Scholar 

  164. Agüı L, Manso J, Yáñez-Sedeño P, Pingarrón J (2004) Colloidal-gold cysteamine-modified carbon paste electrodes as suitable electrode materials for the electrochemical determination of sulphur-containing compounds: application to the determination of methionine. Talanta 64(4):1041–1047

    Article  PubMed  Google Scholar 

  165. Sasikumar R, Ranganathan P, Chen S-M, Kavitha T, Lee S-Y, Chen T-W, Chang W-H (2017) Electrochemical determination of sulfur-containing amino acid on Screen-Printed Carbon Electrode modified with Graphene Oxide. Int J Electrochem Sci 12:4077–4085

    Article  CAS  Google Scholar 

  166. Perevezentseva D, Skirdin K, Gorchakov E, Bimatov V (2016) Electrochemical activity of methionine at graphite electrode modified with gold nanoparticles. In: Key Eng Mater. Trans Tech Publ 685:563–568

  167. Odewunmi NA, Kawde A-N, Ibrahim M (2019) In-situ single-step electrochemical AgO modified graphite pencil electrode for trace determination of DL-methionine in human serum sample. Sens Actuators: B Chem 281:765–773

    Article  CAS  Google Scholar 

  168. Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochimica et Biophysica Acta (BBA)-Biomembranes 1660(1–2):171–199

    Article  CAS  PubMed  Google Scholar 

  169. James AM, Smith RA, Murphy MP (2004) Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch Biochem Biophys 423(1):47–56

    Article  CAS  PubMed  Google Scholar 

  170. Acosta MJ, Fonseca LV, Desbats MA, Cerqua C, Zordan R, Trevisson E (1857) Salviati L (2016) Coenzyme Q biosynthesis in health and disease. Biochimica et Biophysica Acta Bioenergetics 8:1079–1085

    Google Scholar 

  171. Ó Conghaile P, Arrigan DW (2022) Ubiquinone electrochemistry in analysis and sensing. Electrochemical Science Advances e2100214:1–11

  172. Barsan MM, Diculescu VC (2019) New electrochemical sensor based on CoQ10 and cyclodextrin complexes for the detection of oxidative stress initiators. Electrochim Acta 302:441–448

    Article  CAS  Google Scholar 

  173. Li D, Deng W, Xu H, Sun Y, Wang Y, Chen S, Ding X (2016) Electrochemical investigation of coenzyme Q10 on silver electrode in ethanol aqueous solution and its determination using differential pulse voltammetry. J Lab Autom 21(4):579–589

    Article  CAS  PubMed  Google Scholar 

  174. Charoenkitamorn K, Chaiyo S, Chailapakul O, Siangproh W (2018) Low-cost and disposable sensors for the simultaneous determination of coenzyme Q10 and α-lipoic acid using manganese (IV) oxide-modified screen-printed graphene electrodes. Anal Chim Acta 1004:22–31

    Article  CAS  PubMed  Google Scholar 

  175. Schou-Pedersen AMV, Schemeth D, Lykkesfeldt J (2019) Determination of reduced and oxidized coenzyme Q10 in canine plasma and heart tissue by HPLC-ECD: comparison with LC-MS/MS quantification. Antioxidants 8(8):253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Seifar F, Khalili M, Khaledyan H, Amiri Moghadam S, Izadi A, Azimi A, Shakouri SK (2019) α-Lipoic acid, functional fatty acid, as a novel therapeutic alternative for central nervous system diseases: A review. Nutr Neurosci 22(5):306–316

    Article  CAS  PubMed  Google Scholar 

  177. Xiang W, Wang L, Cheng S, Zhou Y, Ma L (2019) Protective Effects of α-Lipoic Acid on Vascular Oxidative Stress in Rats with Hyperuricemia. Current Medical Science 39(6):920–928

    Article  CAS  PubMed  Google Scholar 

  178. Ziyatdinova G, Budnikov G, Pogorel’tsev V (2004) Electrochemical determination of lipoic acid. J Anal Chem 59(3):288–290

    Article  CAS  Google Scholar 

  179. Miranda M, Del Rio R, Del Valle M, Faundez M, Armijo F (2012) Use of fluorine-doped tin oxide electrodes for lipoic acid determination in dietary supplements. J Electroanal Chem 668:1–6

    Article  CAS  Google Scholar 

  180. Stankovic DM, Mehmeti E, Kalcher K (2016) Development of sensitive analytical approach for the quantification of α-lipoic acid using boron doped diamond electrode. Anal Sci 32(8):847–851

    Article  CAS  PubMed  Google Scholar 

  181. Ferreira APM, dos Santos Pereira LN, da Silva IS, Tanaka SM, Tanaka AA, Angnes L (2014) Determination of α-Lipoic acid on a Pyrolytic Graphite Electrode Modified with Cobalt Phthalocyanine. Electroanalysis 26(10):2138–2144

    Article  CAS  Google Scholar 

  182. Sasikumar R, Ranganathan P, Chen S-M, Rwei S-P (2018) f-MWCNTs-PIN/Ti2O3 nanocomposite: Preparation, characterization and nanomolar detection of α-Lipoic acid in vegetables. Sens Actuators: B Chem 255:217–225

    Article  CAS  Google Scholar 

  183. Ziyatdinova G, Antonova T, Vorobev V, Osin Y, Budnikov H (2019) Selective voltammetric determination of α-lipoic acid on the electrode modified with SnO 2 nanoparticles and cetyltriphenylphosphonium bromide. Monatshefte für Chemie-Chemical Monthly 150(3):401–410

    Article  CAS  Google Scholar 

  184. Skorupa A, Michalkiewicz S (2020) Voltammetric Determination of α-Lipoic Acid using Carbon Fiber Microelectrode in Acetic Acid-Acetonitrile Solutions. Int J Electrochem Sci 15:1581–1594

    Article  CAS  Google Scholar 

  185. Vítek L (2020) Bilirubin as a signaling molecule. Med Res Rev 40(4):1335–1351

    Article  PubMed  Google Scholar 

  186. Yao Q, Jiang X, Huang Z-W, Lan Q-H, Wang L-F, Chen R, Li X-Z, Kou L, Xu H-L, Zhao Y-Z (2019) Bilirubin improves the quality and function of hypothermic preserved islets by its antioxidative and anti-inflammatory effect. Transplantation 103(12):2486–2496

    Article  CAS  Google Scholar 

  187. Ziberna L, Martelanc M, Franko M, Passamonti S (2016) Bilirubin is an endogenous antioxidant in human vascular endothelial cells. Sci Rep 6:29240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fevery J (2008) Bilirubin in clinical practice: a review. Liver Int 28(5):592–605

    Article  CAS  PubMed  Google Scholar 

  189. Kannan P, Chen H, Lee VT-W, Kim D-H (2011) Highly sensitive amperometric detection of bilirubin using enzyme and gold nanoparticles on sol–gel film modified electrode. Talanta 86:400–407

    Article  CAS  PubMed  Google Scholar 

  190. Manikandan PN, Imran H, Dharuman V (2019) Self-powered polymer–metal oxide hybrid solar cell for non-enzymatic potentiometric sensing of bilirubin. Medical Devices & Sensors 2(2):e10031

    Article  Google Scholar 

  191. Akhoundian M, Alizadeh T, Pan G (2020) Fabrication of the Enzyme-less Voltammetric Bilirubin Sensor Based on Sol-gel Imprinted Polymer. Electroanalysis 32(3):479–488

    Article  CAS  Google Scholar 

  192. Sivalingam T, Devasena T, Dey N, Maheswari U (2019) Curcumin-Loaded Chitosan Sensing System for Electrochemical Detection of Bilirubin. Sens Lett 17(3):228–236

    Article  Google Scholar 

  193. Zheng Z, Feng Q, Zhu M, Shang J, Li M, Li C, Kou L, Zheng J, Wang C (2019) Electrochemical sensor for the discrimination of bilirubin in real human blood based on Au nanoparticles/tetrathiafulvalene–carboxylate functionalized reduced graphene oxide 0D–2D heterojunction. Anal Chim Acta 1072:46–53

    Article  CAS  PubMed  Google Scholar 

  194. Bell JG, Mousavi MP, Abd El-Rahman MK, Tan EK, Homer-Vanniasinkam S, Whitesides GM (2019) based potentiometric sensing of free bilirubin in blood serum. Biosens Bioelectron 126:115–121

    Article  CAS  PubMed  Google Scholar 

  195. Taurino I, Van Hoof V, Magrez A, Forró L, De Micheli G, Carrara S (2014) Efficient voltammetric discrimination of free bilirubin from uric acid and ascorbic acid by a CVD nanographite-based microelectrode. Talanta 130:423–426

    Article  CAS  PubMed  Google Scholar 

  196. Narang J, Chauhan N, Mathur A, Chaturvedi V, Pundir C (2015) A third generation bilirubin sensor development by using gold nanomaterial as an immobilization matrix for signal amplification. Adv Mater Lett 6:1012–1017

    Article  CAS  Google Scholar 

  197. Thangamuthu M, Gabriel WE, Santschi C, Martin OJ (2018) Electrochemical sensor for bilirubin detection using screen printed electrodes functionalized with carbon nanotubes and graphene. Sensors 18(3):800

    Article  PubMed  PubMed Central  Google Scholar 

  198. Dehghani H, Khoramnejadian S, Mahboubi M, Sasani M, Ghobadzadeh S, Haghighi SM, Negahdary M (2016) Bilirubin biosensing by using of catalase and ZnS nanoparticles as modifier. Int J Electrochem Sci 11:2029–2045

    CAS  Google Scholar 

  199. Zhang C, Bai W, Qin T, Yang Z (2018) Fabrication of Red Mud/Molecularly Imprinted Polypyrrole-Modified Electrode for the Piezoelectric Sensing of Bilirubin. IEEE Sens J 19(4):1280–1284

    Article  Google Scholar 

  200. Rahman MM, Ahmed J, Asiri AM (2019) Selective bilirubin sensor fabrication based on doped IAO nanorods for environmental remediation. New J Chem 43(48):19298–19307

    Article  CAS  Google Scholar 

Download references

Acknowledgements 

We acknowledge the Hamedan University of Medical Sciences, Research and Technology Vice-Chancellor (grant number: 980210464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Ranjbar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 117 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi, M., Walcarius, A., Thangamuthu, M. et al. Electrochemical approaches based on micro- and nanomaterials for diagnosing oxidative stress. Microchim Acta 190, 117 (2023). https://doi.org/10.1007/s00604-023-05681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05681-7

Keywords

Navigation