Skip to main content
Log in

A novel fluorescence aptasensor based on PCN-223 as an efficient quencher for sensitive determination of prostate-specific antigen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel fluorescence aptasensor based on PCN-223 as an efficient quencher was developed to sensitively detect prostate-specific antigen (PSA). The 5-carboxytetramethylrhodamine (TAMRA)-labeled PSA aptamer was adsorbed on PCN-223 by π-π stacking and hydrogen-bonding interactions, which contributed to fluorescence quenching because of the photoinduced electron transfer from TAMRA to PCN-223. In addition, the amount of quenched fluorescence of the PSA-binding aptamer complex-PCN-223 was lower than that of TAMRA aptamer-PCN-223 without PSA (at excitation/emission peaks of 545/582 nm), which can be explained by the fact that the PSA-binding aptamer complexes contributed to the separation of the aptamer from PCN-223. ∆F value of fluorescence intensities for TAMRA aptamer-PCN-223 with and without PSA showed a good linear relationship with PSA concentration over a range of 0.1 to 24 ng mL–1, with a detection limit of 0.05 ng mL–1. Compared with three metal–organic frameworks (MOFs) of UiO-66-NH2, ZIF-67, and Ni3(HITP)2 as quenchers, PCN-223 as a Zr-MOF exhibited the highest ∆F value for PSA detection. The advantage of PCN-223 could be attributed to its carboxyl, benzene, and porphyrin groups, the large specific surface area and good biocompatibility. This proposed aptasensor can be successfully used to detect PSA in sera of prostate cancer patients. The PSA detection results of this aptasensor were consistent with those which were obtained from hospital by Archtecti2000sr automatic chemiluminescence immunoanalyzer. The proposed aptasensor has potential clinical detection application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting the results of this work are available from the corresponding author on reasonable request.

References

  1. Kawatani M, Yamamoto K, Yamada D, Kamiya M, Miyakawa J, Miyama Y, Kojima R, Morikawa T, Kume H, Urano Y (2019) Fluorescence detection of prostate cancer by an activatable fluorescence probe for PSMA carboxypeptidase activity. J Am Chem Soc 141:10409–10416

    Article  CAS  Google Scholar 

  2. Zhang K, Lv S, Lin Z, Li M, Tang D (2018) Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation. Biosens Bioelectron 101:159–166

    Article  CAS  Google Scholar 

  3. Wang Y, Ji S, Xu H, Zhao W, Xu J, Chen H (2018) Bidirectional electrochemiluminescence color switch: an application in detecting multimarkers of prostate cancer. Anal Chem 90:3570–3575

    Article  CAS  Google Scholar 

  4. Ouhibi A, Raouafi A, Lorrain N, Guendouz M, Raouafi N, Moadhen A (2021) Functionalized SERS substrate based on silicon nanowires for rapid detection of prostate specific antigen. Sens Actuator B 330:129352

    Article  CAS  Google Scholar 

  5. Zhao Y, Cui L, Sun Y, Zheng F, Ke W (2019) Ag/CdO NP-engineered magnetic electrochemical aptasensor for prostatic specific antigen detection. ACS Appl Mater Inter 11:3474–3481

    Article  CAS  Google Scholar 

  6. Sun Y, Fan J, Cui L, Ke W, Zheng F, Zhao Y (2019) Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen. Microchim Acta 186:152

    Article  Google Scholar 

  7. Duan N, Li C, Song M, Ren K, Wang Z, Wu S (2022) Deoxynivalenol fluorescence aptasensor based on AuCu bimetallic nanoclusters and MoS2. Microchim Acta 189:296

    Article  CAS  Google Scholar 

  8. Jiang Y, Tang Y, Miao P (2019) Polydopamine nanosphere@silver nanoclusters for fluorescence detection of multiplex tumor markers. Nanoscale 11:8119–8123

  9. Zhao L, Cheng M, Liu G, Lu H, Gao Y, Yan X, Liu F, Sun P, Lu G (2018) A fluorescent biosensor based on molybdenum disulfide nanosheets and protein aptamer for sensitive detection of carcinoembryonic antigen. Sens Actuators B 73:185–190

    Article  Google Scholar 

  10. Li C, Zhang J, Jiang H, Wang X, Liu J (2020) Orthogonal adsorption of carbon dots and DNA on nanoceria. Langmuir 36:2474–2481

    Article  CAS  Google Scholar 

  11. Liu S, Bai J, Huo Y, Ning B, Peng Y, Li S, Han D, Kang W, Gao Z (2020) A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol. Biosens Bioelectron 149:111801

    Article  CAS  Google Scholar 

  12. Liu S, Huo Y, Deng S, Li G, Li S, Huang L, Ren S, Gao Z (2022) A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin. Biosens Bioelectron 201:113891

    Article  CAS  Google Scholar 

  13. Wang Z, Zhou X, Li Y, Huang Z, Han J, Xie G, Liu J (2021) Sensing ATP: zeolitic imidazolate framework-67 is superior to aptamers for target recognition. Anal Chem 93:7707–7713

    Article  CAS  Google Scholar 

  14. Yang J, Chen X, Li Y, Zhuang Q, Liu P, Gu J (2017) Zr-based MOFs shielded with phospholipid bilayers: improved biostability and cell uptake for biological applications. Chem Mater 29:4580–4589

    Article  CAS  Google Scholar 

  15. Usov PM, Huffman B, Epley CC, Kessinger MC, Zhu J, Maza WA, Morris AJ (2017) Study of electrocatalytic properties of metal–organic framework PCN-223 for the oxygen reduction reaction. ACS Appl Mater Inter 9:33539–33543

    Article  CAS  Google Scholar 

  16. Zhang J, Xu X, Qiang Y (2020) Ultrasensitive electrochemical aptasensor for ochratoxin A detection using AgPt bimetallic nanoparticles decorated iron-porphyrinic metal-organic framework for signal amplification. Sens Actuators B 312:127964

    Article  CAS  Google Scholar 

  17. Zhang L, Shi X, Zhang Z, Kuchel RP, Namivandi-Zangeneh R, Corrigan N, Jung K, Liang K, Boyer C (2021) Porphyrinic zirconium metal-organic frameworks (MOFs) as heterogeneous photocatalysts for PET-RAFT polymerization and stereolithography. Angew Chem Int Ed 60:5489–5496

    Article  CAS  Google Scholar 

  18. Chen B, Yang Z, Qu X, Zheng S, Yin D, Fu H (2021) Screening and discrimination of perfluoroalkyl substances in aqueous solution using a luminescent metal-organic framework sensor array. ACS Appl Mater Inter 13:47706–47716

    Article  CAS  Google Scholar 

  19. Wu H, Qian X, Zhu H, Ma S, Zhu G, Long Y (2016) Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co3O4 catalyst for CO oxidation. RSC Adv 6:6915–6920

    Article  CAS  Google Scholar 

  20. Garibay SJ, Cohen SM (2010) Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem Commun 46:7700–7702

    Article  CAS  Google Scholar 

  21. Lei X, Deng Z, Zeng Y, Huang S, Yang Y, Wang H, Guo L, Li L (2021) A novel composite of conductive metal organic framework and molecularly imprinted poly (ionic liquid) for highly sensitive electrochemical detection of bisphenol A. Sens Actuators B 339:129885

    Article  CAS  Google Scholar 

  22. Feng D, Gu Z, Chen Y, Park J, Wei Z, Sun Y, Bosch M, Yuan S, Zhou H (2014) A highly stable porphyrinic zirconium metal–organic framework with shp-a topology. J Am Chem Soc 136:17714–17717

    Article  CAS  Google Scholar 

  23. Sun X, Wang Y, Lei Y (2015) Fluorescence based explosive detection: from mechanisms to sensory materials. Chem Soc Rev 44:8019–8061

  24. Gehlen MH (2020) The centenary of the Stern-Volmer equation of fluorescence quenching: from the single line plot to the SV quenching map. J Photochem Photobiol C Photochem Rev 42:100338

    Article  CAS  Google Scholar 

  25. Cao H, Dong W, Wang T, Shi W, Fu C, Wu Y (2020) Aptasensor based on MoS2 quantum dots with upconversion fluorescence for microcystin-LR detection via the inner filter effect. ACS Sustain Chem Eng 8:10939–10946

    CAS  Google Scholar 

  26. Yu J, Wang X, Kang Q, Li J, Shen D, Chen L (2017) One-pot synthesis of a quantum dot-based molecular imprinting nanosensor for highly selective and sensitive fluorescence detection of 4-nitrophenol in environmental waters. Environ Sci Nano 4:493–502

    Article  CAS  Google Scholar 

  27. Liu J, Chen H, Lin Z, Lin J (2010) Preparation of surface imprinting polymer capped mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem 82:7380–7386

    Article  CAS  Google Scholar 

  28. Afzalinia A, Mirzaee M (2020) Ultrasensitive fluorescent miRNA biosensor based on a “sandwich” oligonucleotide hybridization and fluorescence resonance energy transfer process using an Ln(III)-MOF and Ag nanoparticles for early cancer diagnosis: application of central composite design. ACS Appl Mater Interfaces 12:16076–16087

    Article  CAS  Google Scholar 

  29. Argoubi W, Sánchez A, Parrado C, Raouafi N, Villalonga R (2018) Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sens Actuators B 255:309–315

    Article  CAS  Google Scholar 

  30. Wang R, Liu W, Wang A, Xue Y, Wu L, Feng J (2018) A new label-free electrochemical immunosensor based on dendritic core-shell AuPd@Au nanocrystals for highly sensitive detection of prostate specific antigen. Biosens Bioelectron 99:458–463

    Article  CAS  Google Scholar 

  31. Chen J, Li X, Yu X, Zhou W, Wang Q (2022) Determination of prostate-specific antigen via the assembly of a two-dimensional nanoplatform. J Nanopart Res 24:88

    Article  CAS  Google Scholar 

  32. Qu F, Ding Y, Lv X, Xia L, You J, Han W (2019) Emissions of terbium metal-organic frameworks modulated by dispersive/agglomerated gold nanoparticles for the construction of prostate-specific antigen biosensor. Anal Bioanal Chem 411:3979–3988

    Article  CAS  Google Scholar 

  33. Fang B, An J, Liu B, Zhao Y (2019) Hybridization induced fluorescence enhanced DNA-Ag nanocluster/aptamer probe for detection of prostate-specific antigen. Colloids Surf B 175:358–364

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Province Public Welfare Technology Application Research Project (No. LGF21B050004) and the National Natural Science Foundation of China (No. 21507041, 21677060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanbo Zeng, Lei Li or Zhaosheng Qian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 706 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Tang, Q., Zeng, Y. et al. A novel fluorescence aptasensor based on PCN-223 as an efficient quencher for sensitive determination of prostate-specific antigen. Microchim Acta 190, 70 (2023). https://doi.org/10.1007/s00604-023-05650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05650-0

Keywords

Navigation