Skip to main content
Log in

Recent advances in nanotechnology-enhanced biosensors for α-fetoprotein detection

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

α-Fetoprotein (AFP) is a kind of fetal protein that is related to tumor, the increasing concentration of which gives birth to a large variety of diseases, such as liver cancer. Therefore, the detection method with super sensitivity, high selectivity, and less time consumption under trace concentrations in early stage of diseases is becoming a necessity. In recent years, nanomaterials have been regarded as significant resources for the exploration of efficient biosensors with high sensitivity, selectivity, speed, as well as simple process, due to their excellent optical, electrical, and chemical properties. In this paper, we reviewed the research progress of AFP biosensors with enhanced sensitivity and selectivity by nanoparticles. Representative examples have also been displayed in this paper to expound the nanotechnologies utilized in the early detection of AFP. Furthermore, challenges of the clinical application of AFP biosensors based on nanotechnology have been elaborated, as well as the development opportunity in this field in the future.

Graphical abstract

This review provides a comprehensive overview on the various nano-biosensor for AFP detection based on functional nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from ref. [8] Copyright 2021, ACS Publishing. (B) Shell-encoded AuNPs equipped with tunable electroactivity which can be utilized in the detection of both AFP and CEA. Reproduced with permission from ref. [13] Copyright 2018, Elsevier Publishing. (C) Synthesis of BSA/anti-AFP/AuNFs/ITO immunosensor and possible mechanism of the luminol-O2 system. Reproduced with permission from ref. [26] Copyright 2019, Elsevier Publishing. (D) The process of enzyme-free amplified plasmonic immunoassay. Reproduced with permission from ref. [31] Copyright 2020, ACS Publishing

Fig. 3

Reproduced with permission from ref. [4] Copyright 2019, IOP Publishing. (B) Principles of multienzyme-nanoparticle amplification based on microbeads for analysis of AFP antigens. Reproduced with permission from ref. [40] Copyright 2012, Elsevier Publishing. (C) The preparation and assay procedure of the 3D m-OPECI. Reproduced with permission from ref. [41] Copyright 2015, RSC Publishing. (D) Operating principle of the FRET fluorescent sensor on the basis of a sandwiched QDs-AFP-AuNPs. Reproduced with permission from ref. [42] Copyright 2019, Elsevier Publishing

Fig. 4

Reproduced with permission from ref. [45] Copyright 2012, ACS Publishing. (B) I, Steps for sample treatment with magnetic Fe3O4@Au-Ab2MNPs. II, The surface preparation steps of the enhanced surface plasmon resonance sensor enhanced by magnetic Fe3O4@Au composite. Reproduced with permission from ref. [49] Copyright 2012, Elsevier Publishing. (C) Principles of the immunosensor on the basis of hybridization chain reaction and biotin-streptavidin signal amplification strategy to detect four antigens including AFP. Reproduced with permission from ref. [50] Copyright 2015, Elsevier Publishing. (D) The fabrication process of the AFP biosensor on the basis of anticoagulating magnetic nanoparticles. Reproduced with permission from ref. [54] Copyright 2017, Elsevier Publishing

Fig. 5

Reproduced with permission from ref. [60] Copyright 2013, Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim Publishing. (B) The fabrication of procedure of AFP immunosensor based on reduced graphene nanosheet hybridized by AuNp/ZnO nanorods. Reproduced with permission from ref. [66] Copyright 2017, Elsevier Publishing. (C) I, The preparation process of Ab2-Au@Pt DNRs/NH2-MoSe2 NSs. II, The fabrication procedure of the sandwich-type electrochemical immunosensor based on Au@Pt DNRs/NH2-MoSe2 NSs nanocomposite. Reproduced with permission from ref. [68] Copyright 2019, Elsevier Publishing. (D) I, Preparation of the PEC electrode; II, fabrication of the AFP-PFBT-GOD fluorescent probe, and the competitive linkage of AFP and AFP-PFBT-GOD on the graphene honeycomb structure electrode. Reproduced with permission from ref. [72] Copyright 2020, Elsevier Publishing

Fig. 6

Reproduced with permission from ref. [74] Copyright 2016, RSC. (B) Photoelectrochemical (PEC) immunoassay triggered by near-infrared (NIR) light AFP detection based on core-core–shell UCNP@Au@CdS upconversion nanospheres. I, Process of the sandwich-type immunoassay. II, Process of energy transfer with the exposure of under NIR irradiation. Reproduced with permission from ref. [76] Copyright 2018, ACS Publishing. (C) The signal-off PEC immunoassay for AFP detection. I, Steps of electrode materials synthesis and immunoreaction. II, The internal filter effect (IFE) on the surface layer of the UCNP. III, The electron snatching effect on the BPEI/UCNP@CdTe QD nanocomposites-modified FTO electrode. Reproduced with permission from ref. [77] Copyright 2019, ACS Publishing. (D) Principle of AuNP@SiO2 preparation and vanillin detection. Reproduced with permission from ref. [78] Copyright 2018, Springer-Verlag Publishing

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Ferlay J, Colombet M, Soerjomataram I et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953. https://doi.org/10.1002/ijc.31937

    Article  CAS  Google Scholar 

  2. Trevisani F, Garuti F, Neri A (2019) Alpha-fetoprotein for diagnosis, prognosis, and transplant selection. Semin Liver Dis 39:163–177. https://doi.org/10.1055/s-0039-1677768

    Article  CAS  Google Scholar 

  3. Li Y, Yin S, Hou J et al (2019) Metal coordination polymer induced perylene probe excimer fluorescence and its application in acetylcholinesterase sensing and alpha-fetoprotein immunoassay. Analyst 144:2034–2041. https://doi.org/10.1039/c8an02231c

    Article  CAS  Google Scholar 

  4. Liu L, Wang H, Xie B et al (2022) Detection of alpha-fetoprotein using aptamer-based sensors. Biosensors 12:780. https://doi.org/10.3390/bios12100780

    Article  CAS  Google Scholar 

  5. Tsai HY, Wu HH, Chou BC et al (2019) A magneto-microfluidic platform for fluorescence immunosensing using quantum dot nanoparticles. Nanotechnology 30:505101. https://doi.org/10.1088/1361-6528/ab423d

    Article  CAS  Google Scholar 

  6. Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115:10575–10636. https://doi.org/10.1021/acs.chemrev.5b00100

    Article  CAS  Google Scholar 

  7. Li Y, Xin J, Sun Y et al (2020) Magnetic resonance imaging-guided and targeted theranostics of colorectal cancer. Cancer Biol Med 17:307–327. https://doi.org/10.20892/j.issn.2095-3941.2020.0072

    Article  CAS  Google Scholar 

  8. Er E, Sánchez-Iglesias A, Silvestri A et al (2021) Metal nanoparticles/MoS(2) surface-enhanced Raman scattering-based sandwich immunoassay for α-fetoprotein detection. ACS Appl Mater Interfaces 13:8823–8831. https://doi.org/10.1021/acsami.0c22203

    Article  CAS  Google Scholar 

  9. Lu D, Xu Q, Pang G, Lu F (2018) A novel electrochemical immunosensor based on Au nanoparticles and horseradish peroxidase signal amplification for ultrasensitive detection of α-fetoprotein. Biomed Microdevices 20:46. https://doi.org/10.1007/s10544-018-0291-7

    Article  CAS  Google Scholar 

  10. Rashidiani J, Kamali M, Sedighian H et al (2018) Ultrahigh sensitive enhanced-electrochemiluminescence detection of cancer biomarkers using silica NPs/graphene oxide: a comparative study. Biosens Bioelectron 102:226–233. https://doi.org/10.1016/j.bios.2017.11.011

    Article  CAS  Google Scholar 

  11. Nietzold C, Lisdat F (2012) Fast protein detection using absorption properties of gold nanoparticles. Analyst 137:2821. https://doi.org/10.1039/c2an35054h

    Article  CAS  Google Scholar 

  12. Li K, Liu G, Wu Y et al (2014) Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum. Talanta 120:419–424. https://doi.org/10.1016/j.talanta.2013.11.085

    Article  CAS  Google Scholar 

  13. Zhao Y, Yang Y, Sun Y et al (2018) Shell-encoded Au nanoparticles with tunable electroactivity for specific dual disease biomarkers detection. Biosens Bioelectron 99:193–200. https://doi.org/10.1016/j.bios.2017.07.061

    Article  CAS  Google Scholar 

  14. Su H, Yuan R, Chai Y, Zhuo Y (2012) Enzyme-nanoparticle conjugates at oil-water interface for amplification of electrochemical immunosensing. Biosens Bioelectron 33:288–292. https://doi.org/10.1016/j.bios.2011.12.053

    Article  CAS  Google Scholar 

  15. Lai W, Tang D, Que X et al (2012) Enzyme-catalyzed silver deposition on irregular-shaped gold nanoparticles for electrochemical immunoassay of alpha-fetoprotein. Anal Chim Acta 755:62. https://doi.org/10.1016/j.aca.2012.10.028

    Article  CAS  Google Scholar 

  16. Putnin T, Ngamaroonchote A, Wiriyakun N et al (2019) Dually functional polyethylenimine-coated gold nanoparticles: a versatile material for electrode modification and highly sensitive simultaneous determination of four tumor markers. Mikrochim Acta 186:305. https://doi.org/10.1007/s00604-019-3370-4

    Article  CAS  Google Scholar 

  17. Peng MP, Ma W, Long YT (2015) Alcohol dehydrogenase-catalyzed gold nanoparticle seed-mediated growth allows reliable detection of disease biomarkers with the naked eye. Anal Chem 87:5891–5896. https://doi.org/10.1021/acs.analchem.5b00287

    Article  CAS  Google Scholar 

  18. Liu QL, Yan XH, Yin XM et al (2013) Electrochemical enzyme-linked immunosorbent assay (ELISA) for α-fetoprotein based on glucose detection with multienzyme-nanoparticle amplification. Molecules 18:12675–12686. https://doi.org/10.3390/molecules181012675

    Article  CAS  Google Scholar 

  19. Hu W, Chen H, Shi Z, Yu L (2014) Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker. Anal Biochem 453:16–21. https://doi.org/10.1016/j.ab.2014.02.022

    Article  CAS  Google Scholar 

  20. Lan T, Dong C, Huang X, Ren J (2011) Single particle technique for one-step homogeneous detection of cancer marker using gold nanoparticle probes. Analyst 136:4247. https://doi.org/10.1039/c1an15497d

    Article  CAS  Google Scholar 

  21. Park SY, Wu TH, Chen Y et al (2011) High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab Chip 11:1010–1012. https://doi.org/10.1039/c0lc00555j

    Article  CAS  Google Scholar 

  22. Zhang C, Gao Y, Yang N et al (2018) Direct determination of the tumor marker AFP via silver nanoparticle enhanced SERS and AFP-modified gold nanoparticles as capturing substrate. Mikrochim Acta 185:90. https://doi.org/10.1007/s00604-017-2652-y

    Article  CAS  Google Scholar 

  23. Ko WY, Tien TJ, Hsu CY, Lin KJ (2019) Ultrasensitive label- and amplification-free photoelectric protocols based on sandwiched layer-by-layer plasmonic nanocomposite films for the detection of alpha-fetoprotein. Biosens Bioelectron 126:455–462. https://doi.org/10.1016/j.bios.2018.11.020

    Article  CAS  Google Scholar 

  24. Li X, Pan X, Lu J et al (2020) Dual-modal visual/photoelectrochemical all-in-one bioassay for rapid detection of AFP using 3D printed microreactor device. Biosens Bioelectron 158:112158. https://doi.org/10.1016/j.bios.2020.112158

    Article  CAS  Google Scholar 

  25. Wang XL, Ji JW, Yang PF, et al (2022) A love-mode surface acoustic wave aptasensor with dummy fingers based on monolayer MoS2/Au NPs nanocomposites for alpha-fetoprotein detection. Talanta 243.https://doi.org/10.1016/j.talanta.2022.123328

  26. Hu Q, Yang J, Zheng Z et al (2019) In situ H(2)O(2) generation with gold nanoflowers as the coreactant accelerator for enzyme-free electrochemiluminescent immunosensing. Biosens Bioelectron 143:111627. https://doi.org/10.1016/j.bios.2019.111627

    Article  CAS  Google Scholar 

  27. Li W, Jiang X, Xue J et al (2015) Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein. Biosens Bioelectron 68:468–474. https://doi.org/10.1016/j.bios.2015.01.033

    Article  CAS  Google Scholar 

  28. Shen C, Wang L, Zhang H et al (2020) An electrochemical sandwich immunosensor based on signal amplification technique for the determination of alpha-fetoprotein. Front Chem 8:589560. https://doi.org/10.3389/fchem.2020.589560

    Article  CAS  Google Scholar 

  29. Aydindogan E, Ceylan AE, Timur S (2020) Paper-based colorimetric spot test utilizing smartphone sensing for detection of biomarkers. Talanta 208:120446. https://doi.org/10.1016/j.talanta.2019.120446

    Article  CAS  Google Scholar 

  30. Liu Q, Yang T, Ye Y et al (2019) A highly sensitive label-free electrochemical immunosensor based on an aligned GaN nanowires array/polydopamine heterointerface modified with Au nanoparticles. J Mater Chem B 7:1442–1449. https://doi.org/10.1039/c8tb03233e

    Article  CAS  Google Scholar 

  31. Xu D, Sun ZH, Hua X et al (2020) Plasmon-induced photoreduction system allows ultrasensitive detection of disease biomarkers by silver-mediated immunoassay. ACS Sens 5:2184–2190. https://doi.org/10.1021/acssensors.0c00799

    Article  CAS  Google Scholar 

  32. Cheng M, Zhang Y, Wang Y et al (2020) SERS immunosensor of array units surrounded by particles: a platform for auxiliary diagnosis of hepatocellular carcinoma. Nanomaterials (Basel) 10:2090. https://doi.org/10.3390/nano10102090

    Article  CAS  Google Scholar 

  33. Zhang XB, Li YY, Lv H et al (2018) Electrochemical immunosensor with enhanced stability for sensitive detection of alpha-fetoprotein based on Pd@Ag@CeO2 as signal amplification label. J Electrochem Soc 165:931–938. https://doi.org/10.1149/2.1181816jes

    Article  CAS  Google Scholar 

  34. Sun ZH, Zhang XX, Xu D et al (2021) Silver-amplified fluorescence immunoassay via aggregation-induced emission for detection of disease biomarker. Talanta 225:121963. https://doi.org/10.1016/j.talanta.2020.121963

    Article  CAS  Google Scholar 

  35. Li G, Zeng J, Liu H et al (2019) A fluorometric aptamer nanoprobe for alpha-fetoprotein by exploiting the FRET between 5-carboxyfluorescein and palladium nanoparticles. Mikrochim Acta 186:314. https://doi.org/10.1007/s00604-019-3403-z

    Article  CAS  Google Scholar 

  36. Lv S, Zhang K, Zhu L et al (2019) H(2)-based electrochemical biosensor with Pd nanowires@ZIF-67 molecular sieve bilayered sensing interface for immunoassay. Anal Chem 91:12055–12062. https://doi.org/10.1021/acs.analchem.9b03177

    Article  CAS  Google Scholar 

  37. Xiang QM, Wang LW, Yuan JP et al (2015) Quantum dot-based multispectral fluorescent imaging to quantitatively study co-expressions of Ki67 and HER2 in breast cancer. Exp Mol Pathol 99:133–138. https://doi.org/10.1016/j.yexmp.2015.06.013

    Article  CAS  Google Scholar 

  38. Jin C, Wang K, Oppong-Gyebi A, Hu J (2020) Application of nanotechnology in cancer diagnosis and therapy - a mini-review. Int J Med Sci 17:2964–2973. https://doi.org/10.7150/ijms.49801

    Article  CAS  Google Scholar 

  39. Pan D, Chen K, Zhou Q et al (2019) Engineering of CdTe/SiO(2) nanocomposites: enhanced signal amplification and biocompatibility for electrochemiluminescent immunoassay of alpha-fetoprotein. Biosens Bioelectron 131:178–184. https://doi.org/10.1016/j.bios.2019.02.022

    Article  CAS  Google Scholar 

  40. Zhang H, Liu L, Fu X, Zhu Z (2013) Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels. Biosens Bioelectron 42:23–30. https://doi.org/10.1016/j.bios.2012.10.076

    Article  CAS  Google Scholar 

  41. Ge S, Li W, Yan M et al (2015) Photoelectrochemical detection of tumor markers based on a CdS quantum dot/ZnO nanorod/Au@Pt-paper electrode 3D origami immunodevice. J Mater Chem B 3:2426–2432. https://doi.org/10.1039/c4tb01570c

    Article  CAS  Google Scholar 

  42. Zhou L, Ji F, Zhang T et al (2019) An fluorescent aptasensor for sensitive detection of tumor marker based on the FRET of a sandwich structured QDs-AFP-AuNPs. Talanta 197:444–450. https://doi.org/10.1016/j.talanta.2019.01.012

    Article  CAS  Google Scholar 

  43. Li Q, Jin J, Lou F, Tang D (2018) Metal sulfide quantum dots-aggregated PAMAM dendrimer for cadmium ion-selective electrode-based immunoassay of alpha-fetoprotein. SCIENCE CHINA Chem 61:750–756. https://doi.org/10.1007/s11426-017-9211-7

    Article  CAS  Google Scholar 

  44. Gong JL, Liang Y, Huang Y et al (2007) Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosens Bioelectron 22:1501–1507. https://doi.org/10.1016/j.bios.2006.07.004

    Article  CAS  Google Scholar 

  45. Tang J, Tang D, Niessner R et al (2011) Magneto-controlled graphene immunosensing platform for simultaneous multiplexed electrochemical immunoassay using distinguishable signal tags. Anal Chem 83:5407–5414. https://doi.org/10.1021/ac200969w

    Article  CAS  Google Scholar 

  46. Su Y, Xue T, Wu L et al (2020) Label-free detection of biomarker alpha fetoprotein in serum by ssDNA aptamer functionalized magnetic nanoparticles. Nanotechnology 31:095104. https://doi.org/10.1088/1361-6528/ab57f7

    Article  CAS  Google Scholar 

  47. Zhuo Y, Yuan PX, Yuan R et al (2009) Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 30:2284–2290. https://doi.org/10.1016/j.biomaterials.2009.01.002

    Article  CAS  Google Scholar 

  48. Chun C, Joo J, Kwon D et al (2011) A facile and sensitive immunoassay for the detection of alpha-fetoprotein using gold-coated magnetic nanoparticle clusters and dynamic light scattering. Chem Commun (Camb) 47:11047. https://doi.org/10.1039/c1cc14024h

    Article  CAS  Google Scholar 

  49. Liang RP, Yao GH, Fan LX, Qiu JD (2012) Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein. Anal Chim Acta 737:22–28. https://doi.org/10.1016/j.aca.2012.05.043

    Article  CAS  Google Scholar 

  50. Zhu Q, Chai Y, Zhuo Y, Yuan R (2015) Ultrasensitive simultaneous detection of four biomarkers based on hybridization chain reaction and biotin-streptavidin signal amplification strategy. Biosens Bioelectron 68:42–48. https://doi.org/10.1016/j.bios.2014.12.023

    Article  CAS  Google Scholar 

  51. Jiang M, Wang M, Lai W et al (2022) Preparation of a pH-responsive controlled-release electrochemical immunosensor based on polydopamine encapsulation for ultrasensitive detection of alpha-fetoprotein. Microchim Acta 189:334. https://doi.org/10.1007/s00604-022-05433-z

    Article  CAS  Google Scholar 

  52. Ho SL, Xu D, Wong MS, Li HW (2016) Direct and multiplex quantification of protein biomarkers in serum samples using an immuno-magnetic platform. Chem Sci 7:2695–2700. https://doi.org/10.1039/c5sc04115e

    Article  CAS  Google Scholar 

  53. Wang Z, Fang X, Sun N, Deng C (2020) A rational route to hybrid aptamer-molecularly imprinted magnetic nanoprobe for recognition of protein biomarkers in human serum. Anal Chim Acta 1128:1–10. https://doi.org/10.1016/j.aca.2020.06.036

    Article  CAS  Google Scholar 

  54. Xu T, Chi B, Wu F et al (2017) A sensitive label-free immunosensor for detection α-fetoprotein in whole blood based on anticoagulating magnetic nanoparticles. Biosens Bioelectron 95:87–93. https://doi.org/10.1016/j.bios.2017.04.015

    Article  CAS  Google Scholar 

  55. Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129. https://doi.org/10.1016/j.bios.2017.12.031

    Article  CAS  Google Scholar 

  56. Kesharwani P, Iyer AK (2015) Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 20:536–547. https://doi.org/10.1016/j.drudis.2014.12.012

    Article  CAS  Google Scholar 

  57. Wang H, Wu T, Li M, Tao Y (2021) Recent advances in nanomaterials for colorimetric cancer detection. J Mater Chem B 9:921–938. https://doi.org/10.1039/d0tb02163f

    Article  CAS  Google Scholar 

  58. Che X, Yuan R, Chai Y et al (2010) Amperometric immunosensor for the determination of α-1-fetoprotein based on multiwalled carbon nanotube-silver nanoparticle composite. J Colloid Interface Sci 345:174. https://doi.org/10.1016/j.jcis.2010.01.033

    Article  CAS  Google Scholar 

  59. Cui H, Hong C, Ying A et al (2013) Ultrathin gold nanowire-functionalized carbon nanotubes for hybrid molecular sensing. ACS Nano 7:7805. https://doi.org/10.1021/nn4027323

    Article  CAS  Google Scholar 

  60. Zhao B, Yan J, Wang D et al (2013) Carbon nanotubes multifunctionalized by rolling circle amplification and their application for highly sensitive detection of cancer markers. Small 9:2595–2601. https://doi.org/10.1002/smll.201202957

    Article  CAS  Google Scholar 

  61. Tu MC, Chen HY, Wang Y et al (2015) Immunosensor based on carbon nanotube/manganese dioxide electrochemical tags. Anal Chim Acta 853:228–233. https://doi.org/10.1016/j.aca.2014.09.050

    Article  CAS  Google Scholar 

  62. Su B, Tang D, Li Q et al (2011) Gold-silver-graphene hybrid nanosheets-based sensors for sensitive amperometric immunoassay of alpha-fetoprotein using nanogold-enclosed titania nanoparticles as labels. Anal Chim Acta 692:116–124. https://doi.org/10.1016/j.aca.2011.02.061

    Article  CAS  Google Scholar 

  63. Liu N, Ma Z (2014) Au-ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detection of multiple analytes. Biosens Bioelectron 51:184–190. https://doi.org/10.1016/j.bios.2013.07.051

    Article  CAS  Google Scholar 

  64. Li L, Zhang L, Yu J et al (2015) All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker. Biosens Bioelectron 71:108–114. https://doi.org/10.1016/j.bios.2015.04.032

    Article  CAS  Google Scholar 

  65. Zhang B, Ding H, Chen Q et al (2019) Prussian blue nanoparticle-labeled aptasensing platform on graphene oxide for voltammetric detection of α-fetoprotein in hepatocellular carcinoma with target recycling. Analyst 144:4858–4864. https://doi.org/10.1039/c9an01029g

    Article  CAS  Google Scholar 

  66. Fang X, Liu J, Wang J et al (2017) Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker. Biosens Bioelectron 97:218–225. https://doi.org/10.1016/j.bios.2017.05.055

    Article  CAS  Google Scholar 

  67. Sun D, Li H, Li M et al (2019) Electrochemical immunosensors with AuPt-vertical graphene/glassy carbon electrode for alpha-fetoprotein detection based on label-free and sandwich-type strategies. Biosens Bioelectron 132:68–75. https://doi.org/10.1016/j.bios.2019.02.045

    Article  CAS  Google Scholar 

  68. Zhang S, Zhang C, Jia Y et al (2019) Sandwich-type electrochemical immunosensor based on Au@Pt DNRs/NH2-MoSe2 NSs nanocomposite as signal amplifiers for the sensitive detection of alpha-fetoprotein. Bioelectrochemistry 128:140–147. https://doi.org/10.1016/j.bioelechem.2019.03.012

    Article  CAS  Google Scholar 

  69. Li W, Chen M, Liang J et al (2020) Electrochemical aptasensor for analyzing alpha-fetoprotein using RGO-CS-Fc nanocomposites integrated with gold-platinum nanoparticles. Anal Methods 12:4956–4966. https://doi.org/10.1039/d0ay01465f

    Article  CAS  Google Scholar 

  70. Liu S, Zhang J, Tu W et al (2014) Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing. Nanoscale 6:2419. https://doi.org/10.1039/c3nr05944h

    Article  CAS  Google Scholar 

  71. Wu M, Yang Y, Cao K et al (2020) Microwave-assisted preparation of ZnFe(2)O(4)-Ag/rGO nanocomposites for amplification signal detection of alpha-fetoprotein. Bioelectrochemistry 132:107434. https://doi.org/10.1016/j.bioelechem.2019.107434

    Article  CAS  Google Scholar 

  72. Wu Y, Su H, Yang J et al (2020) Photoelectrochemical immunosensor for sensitive detection of alpha-fetoprotein based on a graphene honeycomb film. J Colloid Interface Sci 580:583–591. https://doi.org/10.1016/j.jcis.2020.07.064

    Article  CAS  Google Scholar 

  73. Rahmati Z, Roushani M, Hosseini H (2022) Hierarchical nickel hydroxide nanosheets grown on hollow nitrogen doped carbon nanoboxes as a high-performance surface substrate for alpha-fetoprotein cancer biomarkers electrochemical aptasensing. Talanta 237:122924. https://doi.org/10.1016/j.talanta.2021.122924

    Article  CAS  Google Scholar 

  74. Liu Z, Yang B, Chen B et al (2016) Upconversion nanoparticle as elemental tag for the determination of alpha-fetoprotein in human serum by inductively coupled plasma mass spectrometry. Analyst 142:197–205. https://doi.org/10.1039/c6an01919f

    Article  Google Scholar 

  75. Qu A, Wu X, Xu L et al (2017) SERS- and luminescence-active Au-Au-UCNP trimers for attomolar detection of two cancer biomarkers. Nanoscale 9:3865–3872. https://doi.org/10.1039/c6nr09114h

    Article  CAS  Google Scholar 

  76. Luo Z, Zhang L, Zeng R et al (2018) Near-infrared light-excited core-core-shell UCNP@Au@CdS upconversion nanospheres for ultrasensitive photoelectrochemical enzyme immunoassay. Anal Chem 90:9568–9575. https://doi.org/10.1021/acs.analchem.8b02421

    Article  CAS  Google Scholar 

  77. Luo Z, Qi Q, Zhang L et al (2019) Branched polyethylenimine-modified upconversion nanohybrid-mediated photoelectrochemical immunoassay with synergistic effect of dual-purpose copper ions. Anal Chem 91:4149–4156. https://doi.org/10.1021/acs.analchem.8b05959

    Article  CAS  Google Scholar 

  78. Lu X, Mei T, Guo Q et al (2018) Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles. Mikrochim Acta 186:2. https://doi.org/10.1007/s00604-018-3107-9

    Article  CAS  Google Scholar 

  79. Wu Y, Chen C, Liu S (2009) Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal Chem 81:1600. https://doi.org/10.1021/ac802345z

    Article  CAS  Google Scholar 

  80. Qian J, Zhou Z, Cao X, Liu S (2010) Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)(3)(2+)-encapsulated silica nanosphere labels. Anal Chim Acta 665:32. https://doi.org/10.1016/j.aca.2010.03.013

    Article  CAS  Google Scholar 

  81. Wu Q, Zhang F, Li H et al (2018) A ratiometric photoelectrochemical immunosensor based on g-C(3)N(4)@TiO(2) NTs amplified by signal antibodies-Co(3)O(4) nanoparticle conjugates. Analyst 143:5030–5037. https://doi.org/10.1039/c8an01345d

    Article  CAS  Google Scholar 

  82. Zhao X, Zhu A, Wang Y et al (2021) Sunflower-like nanostructure with built-in hotspots for alpha-fetoprotein detection. Molecules 26:1197. https://doi.org/10.3390/molecules26041197

    Article  CAS  Google Scholar 

  83. Wang YL, Hong YX, Wang M, Zhu YC (2022) Multifunctional nanolabels based on polydopamine nanospheres for sensitive alpha fetoprotein electrochemical detection. Acs Applied Nano Materials 5:1588–1599. https://doi.org/10.1021/acsanm.1c04326

    Article  CAS  Google Scholar 

  84. Chen YY, Chen XP, Lin JW et al (2022) Electrochemical detection of alpha-fetoprotein based on black phosphorus nanosheets modification with iron ions. Micromachines 13:673. https://doi.org/10.3390/mi13050673

    Article  Google Scholar 

  85. Li L, Liang D, Guo WH et al (2022) Antibody-invertase cross-linkage nanoparticles: a new signal tag for point-of-care immunoassay of alpha-fetoprotein for hepatocellular carcinoma with personal glucometer. Electroanalysis 34:246–251. https://doi.org/10.1002/elan.202100212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the patients and colleagues who contributed to the study.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21675074) and the Shandong Natural Science Foundation of Shandong (ZR2017MH042), Shandong Traditional Chinese Medicine Science and Technology Development Plan Project (2017–202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Zhou or Haiyan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Liu, J., Zhou, H. et al. Recent advances in nanotechnology-enhanced biosensors for α-fetoprotein detection. Microchim Acta 190, 3 (2023). https://doi.org/10.1007/s00604-022-05592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05592-z

Keywords

Navigation