Skip to main content
Log in

Polyaniline-polycaprolactone electrospun nanofibrous mat: new polymeric support with anion exchange characteristic for immobilizing liquid membrane in efficient on-chip electromembrane extraction of polar acidic drugs

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The potential of application of an electrospun nanofiber sheet as new polymeric support for immobilizing the liquid membrane, instead of a common commercial polypropylene sheet, in on-chip electromembrane extraction (EME) of some acidic polar drugs followed by HPLC with ultraviolet detection is presented. The nanofiber sheet was prepared by electrospinning a mixture of polycaprolactone and polyaniline. The successful synthesis of the electrospun nanofiber sheet was confirmed by field emission-scanning electron microscopy, energy-dispersive X-ray spectroscopy, elemental mapping, and atomic force microscopy. Several parameters affecting the efficiency of the microextraction method, including pHs of the donor and acceptor phases, applied voltage, sample flow rate, phosphate content of the acceptor phase, and sample volume, were investigated and optimized. After optimization, the linearity range of 0.5–250.0 µg L−1 and detection limits of 0.2–1.0 µg L−1 were obtained for the analytes. The extraction recovery values and preconcentration factors were 10.7–55.3% and 16–83, respectively. The presence of polyaniline in the composition of the nanofibers significantly improved the extraction efficiency of the polar acidic drugs due to providing the possibility of various interactions with the target analytes such as hydrogen bonding, π-stacking, and anion exchange. The obtained results demonstrate the excellent efficiency of the synthesized electrospun nanofibrous mat as a novel support membrane for immobilizing 1-octanol and as an interactive substrate for electromembrane extraction of acidic polar drugs. Eventually, the proposed on-chip EME method exhibits acceptable precision (relative standard deviations less than 9.7% (n = 3)) and good accuracy (86–112%) for determining the target analytes in the plasma samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Han D, Row KH (2012) Trends in liquid-phase microextraction, and its application to environmental and biological samples. Microchim Acta 176:1–22

    Article  CAS  Google Scholar 

  2. Ovais Aziz-Zanjani M, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181:1169–1190

    Article  Google Scholar 

  3. Lord H, Pawliszyn J (2000) Evolution of solid-phase microextraction technology. J Chromatogr A 885(1–2):153–193

    Article  CAS  Google Scholar 

  4. Pedersen-Bjergaard S, Rasmussen KE (2006) Electrokinetic migration across artificial liquid membranes: new concept for rapid sample preparation of biological fluids. J Chromatogr A 1109(2):183–190

    Article  CAS  Google Scholar 

  5. Hong C, Dong Y, Zhu R, Yan Y, Shen X, Pedersen-Bjergaard S, Huang C (2022) Effect of sample matrices on supported liquid membrane: efficient electromembrane extraction of cathinones from biological samples. Talanta 240:123175

    Article  CAS  Google Scholar 

  6. Behpour M, Maghsoudi M, Nojavan S (2022) Analysis of methamphetamine, methadone, tramadol, and buprenorphine in biological samples by ion mobility spectrometry after electromembrane extraction in tandem with slug flow microextraction. J Chromatogr A 1678:463355

    Article  CAS  Google Scholar 

  7. Yamini Y, Seidi S, Rezazadeh M (2014) Electrical field-induced extraction and separation techniques: promising trends in analytical chemistry-a review. Anal Chim Acta 814:1–22

    Article  CAS  Google Scholar 

  8. Huang C, Gjelstad A, Pedersen-Bjergaard S (2016) Organic solvents in electromembrane extraction: recent insights. Rev Anal Chem 35:169–183

    Article  CAS  Google Scholar 

  9. Huang C, Seip KF, Gjelstad A, Shen X, Pedersen-Bjergaard S (2015) Combination of electromembrane extraction and liquid-phase microextraction in a single step: simultaneous group separation of acidic and basic drugs. Anal Chem 87(13):6951–6957

    Article  CAS  Google Scholar 

  10. Huang C, Gjelstad A, Seip KF, Jensen H, Pedersen-Bjergaard S (2015) Exhaustive and stable electromembrane extraction of acidic drugs from human plasma. J Chromatogr A 1425:81–87

    Article  CAS  Google Scholar 

  11. Šlampová A, Kubáň P (2019) Two-phase micro-electromembrane extraction across free liquid membrane for determination of acidic drugs in complex samples. Anal Chim Acta 1048:58–65

    Article  Google Scholar 

  12. Zarghampour F, Yamini Y, Baharfar M, Faraji M (2019) Simultaneous extraction of acidic and basic drugs via on-chip electromembrane extraction using a single-compartment microfluidic device. Analyst 144(4):1159–1166

    Article  CAS  Google Scholar 

  13. Asl YA, Yamini Y, Seidi S, Rezazadeh M (2016) Simultaneous extraction of acidic and basic drugs via on-chip electromembrane extraction. Anal Chim Acta 937:61–68

    Article  CAS  Google Scholar 

  14. Koruni MH, Tabani H, Gharari H, Fakhari AR (2014) An all-in-one electro-membrane extraction: development of an electro-membrane extraction method for the simultaneous extraction of acidic and basic drugs with a wide range of polarities. J Chromatogr A 1361:95–99

    Article  CAS  Google Scholar 

  15. Cristina RH, Jesús MVM, Rut FT, Ángel BLM (2018) Use of polymer inclusion membranes (PIMs) as support for electromembrane extraction of non-steroidal anti-inflammatory drugs and highly polar acidic drugs. Talanta 179:601–607

    Article  CAS  Google Scholar 

  16. Aranda-Merino N, Román-Hidalgo C, Pérez-Bernal JL, Callejón-Mochón M, Villar-Navarro M, Fernández-Torres R (2021) Effect of Aliquat® 336 on supported liquid membrane on electromembrane extraction of non-steroidal anti-inflammatory drugs. Microchem J 168:106459

    Article  CAS  Google Scholar 

  17. Yaripour S, Ebrahimi S, Mohammadi A (2020) Quantitative analysis of phenobarbital in biological fluids: analyte enrichment by an electrically-assisted microextraction technique. Braz J Pharm Sci 56:17839

    Article  Google Scholar 

  18. Xu L, Hauser PC, Lee HK (2008) Electro membrane isolation of nerve agent degradation products across a supported liquid membrane followed by capillary electrophoresis with contactless conductivity detection. J Chromatogr A 1214(1–2):17–22

    Article  CAS  Google Scholar 

  19. Roman-Hidalgo C, Santigosa-Murillo E, Ramos-Payán M, Petersen NJ, Kutter JP, Pedersen-Bjergaard S (2019) On-chip electromembrane extraction of acidic drugs. Electrophoresis 40(18–19):2514–2521

    CAS  Google Scholar 

  20. Payán MR, López MÁB, Torres RF, Navarro MV, Mochón MC (2011) Electromembrane extraction (EME) and HPLC determination of non-steroidal anti-inflammatory drugs (NSAIDs) in wastewater samples. Talanta 85(1):394–399

    Article  Google Scholar 

  21. Xu C, Xie T (2017) Review of microfluidic liquid-liquid extractors. Ind Eng Chem Res 56(27):7593–7622

    Article  CAS  Google Scholar 

  22. Petersen NJ, Jensen H, Hansen SH, Foss ST, Snakenborg D, Pedersen-Bjergaard S (2010) On-chip electro membrane extraction. Microfluid Nanofluid 9(4):881–888

    Article  CAS  Google Scholar 

  23. Alidoust M, Yamini Y, Baharfar M (2022) Microfluidic paper-based analytical devices and electromembrane extraction; Hyphenation of fields towards effective analytical platforms. Anal Chim Acta 1216:339987

    Article  CAS  Google Scholar 

  24. Hansen FA, Petersen NJ, Kutter JP, Pedersen-Bjergaard S (2022) Electromembrane extraction in microfluidic formats. J Sep Sci 45(1):246–257

    Article  CAS  Google Scholar 

  25. Zarghampour F, Yamini Y, Baharfar M, Faraji M (2018) Electromembrane extraction of biogenic amines in food samples by a microfluidic-chip system followed by dabsyl derivatization prior to high performance liquid chromatography analysis. J Chromatogr A 1556:21–28

    Article  CAS  Google Scholar 

  26. Lu T, Cui J, Qu Q, Wang Y, Zhang J, Xiong R, Ma W, Huang C (2021) Multistructured electrospun nanofibers for air filtration: a review. ACS Appl Mater Interfaces 13(20):23293–23313

    Article  CAS  Google Scholar 

  27. Fadil F, Affandi ND, Misnon MI, Bonnia NN, Harun AM, Alam MK (2021) Review on electrospun nanofiber-applied products. Polymers 13(13):2087

    Article  CAS  Google Scholar 

  28. Xia Y, Wiesinger JM, MacDiarmid AG, Epstein AJ (1995) Camphorsulfonic acid fully doped polyaniline emeraldine salt: conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chem Mater 7(3):443–445

    Article  CAS  Google Scholar 

  29. Bhadra J, Alkareem A, Al-Thani N (2020) A review of advances in the preparation and application of polyaniline based thermoset blends and composites. J Polym Res 27(5):1–20

    Article  Google Scholar 

  30. Shadi L, Karimi M, Ramazani S, Entezami AA (2014) Preparation of electrospun nanofibers of star-shaped polycaprolactone and its blends with polyaniline. J Mater Sci 49(14):4844–4854

    Article  CAS  Google Scholar 

  31. Suwantong O (2016) Biomedical applications of electrospun polycaprolactone fiber mats. Polym Adv Technol 27(10):1264–1273

    Article  CAS  Google Scholar 

  32. Kogikoski S Jr, Liberato MS, Factori IM, da Silva ER, Oliveira CL, Ando RA, Alves WA (2017) Polycaprolactone-polyaniline blend: effects of the addition of cysteine on the structural and molecular properties. J Phys Chem C 121(1):863–877

    Article  CAS  Google Scholar 

  33. Licciardello M, Ciardelli G, Tonda-Turo C (2021) biocompatible electrospun polycaprolactone-polyaniline scaffold treated with atmospheric plasma to improve hydrophilicity. Bioengineering 8(2):24

    Article  CAS  Google Scholar 

  34. Wu Q, Wu D, Guan Y (2014) Polyaniline sheathed electrospun nanofiber bar for in vivo extraction of trace acidic phytohormones in plant tissue. J Chromatogr A 1342:16–23

    Article  CAS  Google Scholar 

  35. Chigome S, Darko G, Torto N (2011) Electrospun nanofibers as sorbent material for solid phase extraction. Analyst 136(14):2879–2889

    Article  CAS  Google Scholar 

  36. Wang R, Li C, Li Q, Zhang S, Yan Z (2020) Electrospinning fabrication of covalent organic framework composite nanofibers for pipette tip solid phase extraction of tetracycline antibiotics in grass carp and duck. J Chromatogr A 1622:461098

    Article  CAS  Google Scholar 

  37. Bagheri H, Aghakhani A (2011) Novel nanofiber coatings prepared by electrospinning technique for headspace solid-phase microextraction of chlorobenzenes from environmental samples. Anal Methods 3(6):1284–1289

    Article  CAS  Google Scholar 

  38. Liu Z, Kang X, Fang F (2010) Solid phase extraction with electrospun nanofibers for determination of retinol and α-tocopherol in plasma. Microchim Acta 168(1):59–64

    Article  CAS  Google Scholar 

  39. Yan X, Zhan Y, Zhong D, Li Y, Wu D (2018) Electrospun nanofiber cloud for ultrafast solid phase micro-extraction of trace organics in water samples. J Chromatogr A 1574:42–49

    Article  CAS  Google Scholar 

  40. MacDiarmid AG, Manohar SK, Masters JG, Sun Y, Weiss H, Epstein AJ (1991) Polyaniline: synthesis and properties of pernigraniline base. Synth Met 41(1–2):621–626

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Tahmasebi.

Ethics declarations

Conflict of interest

The authors declare no competing of interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.19 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, E., Mirzania, R. Polyaniline-polycaprolactone electrospun nanofibrous mat: new polymeric support with anion exchange characteristic for immobilizing liquid membrane in efficient on-chip electromembrane extraction of polar acidic drugs. Microchim Acta 190, 2 (2023). https://doi.org/10.1007/s00604-022-05581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05581-2

Keywords

Navigation